Skip to main content

Hyper-dendritic nanoporous zinc foam anodes

Author(s): Chamoun, Mylad; Hertzberg, Benjamin J; Gupta, Tanya; Davies, Daniel; Bhadra, Shoham; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1kp1k
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChamoun, Mylad-
dc.contributor.authorHertzberg, Benjamin J-
dc.contributor.authorGupta, Tanya-
dc.contributor.authorDavies, Daniel-
dc.contributor.authorBhadra, Shoham-
dc.contributor.authorVan Tassell, Barry-
dc.contributor.authorErdonmez, Can-
dc.contributor.authorSteingart, Daniel A-
dc.date.accessioned2021-10-08T20:18:35Z-
dc.date.available2021-10-08T20:18:35Z-
dc.date.issued2015-04-24en_US
dc.identifier.citationChamoun, Mylad, Benjamin J. Hertzberg, Tanya Gupta, Daniel Davies, Shoham Bhadra, Barry Van Tassell, Can Erdonmez, and Daniel A. Steingart. "Hyper-dendritic nanoporous zinc foam anodes." NPG Asia Materials 7, no. e178 (2015): 1-8. doi: 10.1038/am.2015.32en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1kp1k-
dc.description.abstractThe low cost, significant reduction potential and relative safety of the zinc electrode is a common hope for a reductant in secondary batteries, but it is limited mainly to primary implementation due to shape change. In this work, we exploit such shape change for the benefit of static electrodes through the electrodeposition of hyper-dendritic nanoporous zinc foam. Electrodeposition of zinc foam resulted in nanoparticles formed on secondary dendrites in a three-dimensional network with a particle size distribution of 54.1–96.0 nm. The nanoporous zinc foam contributed to highly oriented crystals, high surface area and more rapid kinetics in contrast to conventional zinc in alkaline mediums. The anode material presented had a utilization of ~88% at full depth-of-discharge (DOD) at various rates indicating a superb rate capability. The rechargeability of Zn0/Zn2+ showed significant capacity retention over 100 cycles at a 40% DOD to ensure that the dendritic core structure was imperforated. The dendritic architecture was densified upon charge–discharge cycling and presented superior performance compared with bulk zinc electrodes.en_US
dc.format.extent1 - 8en_US
dc.language.isoen_USen_US
dc.relation.ispartofNPG Asia Materialsen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleHyper-dendritic nanoporous zinc foam anodesen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1038/am.2015.32-
dc.identifier.eissn1884-4057-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
NanoporousZincFoamAnodes.pdf2.2 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.