Skip to main content

Damped-driven granular chains: an ideal playground for dark breathers and multibreathers

Author(s): Chong, C; Li, F; Yang, J; Williams, MO; Kevrekidis, Yannis G.; et al

To refer to this page use:
Abstract: By applying an out-of-phase actuation at the boundaries of a uniform chain of granular particles, we demonstrate experimentally that time-periodic and spatially localized structures with a nonzero background (so-called dark breathers) emerge for a wide range of parameter values and initial conditions. We demonstrate a remarkable control over the number of breathers within the multibreather pattern that can be "dialed in" by varying the frequency or amplitude of the actuation. The values of the frequency (or amplitude) where the transition between different multibreather states occurs are predicted accurately by the proposed theoretical model, which is numerically shown to support exact dark breather and multibreather solutions. Moreover, we visualize detailed temporal and spatial profiles of breathers and, especially, of multibreathers using a full-field probing technology and enable a systematic favorable comparison among theory, computation, and experiments. A detailed bifurcation analysis reveals that the dark and multibreather families are connected in a "snaking" pattern, providing a roadmap for the identification of such fundamental states and their bistability in the laboratory.
Publication Date: 31-Mar-2014
Citation: Chong, C, Li, F, Yang, J, Williams, MO, Kevrekidis, IG, Kevrekidis, PG, Daraio, C. (2014). Damped-driven granular chains: an ideal playground for dark breathers and multibreathers.. Physical review. E, Statistical, nonlinear, and soft matter physics, 89 (3), 032924-1 - 032924-10. doi:10.1103/physreve.89.032924
DOI: doi:10.1103/physreve.89.032924
ISSN: 1539-3755
EISSN: 1550-2376
Pages: 032924-1 - 032924-10
Language: eng
Type of Material: Journal Article
Journal/Proceeding Title: Physical review. E, Statistical, nonlinear, and soft matter physics
Version: Final published version. Article is made available in OAR by the publisher's permission or policy.

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.