Skip to main content

Study of liquid metal surface wave damping in the presence of magnetic fields and electrical currents

Author(s): Fisher, AE; Hvasta, Mike G; Kolemen, Egemen

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1k79z
Abstract: Experiments and predictions of surface wave damping in liquid metal due to a surface aligned magnetic field and externally regulated j × B force are presented. Fast-flowing, liquid-metal plasma facing components (LM-PFCs) are a proposed alternative to solid PFCs that are unable to handle the high heat flux, thermal stresses, and radiation damage in a tokamak. The significant technical challenges associated with LM-PFCs compared to solid PFCs are justified by greater heat flux management, self-healing properties, and reduced particle recycling. However, undesirable engineering challenges such as evaporation and splashing of the liquid metal introduce excessive impurities into the plasma and degrade plasma performance. Evaporation may be avoided through high-speed flow that limits temperature rise of the liquid metal by reducing heat flux exposure time, but as flow speed increases the surface may become more turbulent and prone to splashing and uneven surfaces. Wave damping is one mechanism that reduces surface disturbance and thus the chances of liquid metal impurity introduction into the plasma. Experiments on the Liquid Metal eXperiment Upgrade (LMX-U) examined damping under the influence of transverse magnetic fields and vertically directed Lorentz force.
Publication Date: 2019
Citation: Fisher, AE, Hvasta, MG, Kolemen, E. (2019). Study of liquid metal surface wave damping in the presence of magnetic fields and electrical currents. Nuclear Materials and Energy, 19 (101 - 106. doi:10.1016/j.nme.2019.02.014
DOI: doi:10.1016/j.nme.2019.02.014
Pages: 101 - 106
Type of Material: Journal Article
Journal/Proceeding Title: Nuclear Materials and Energy
Version: Final published version. This is an open access article.



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.