Skip to main content

Phase behavior and morphology of multicomponent liquid mixtures

Author(s): Mao, S; Kuldinow, D; Haataja, Mikko P; Košmrlj, Andrej

To refer to this page use:
Abstract: Multicomponent systems are ubiquitous in nature and industry. While the physics of few-component liquid mixtures (i.e., binary and ternary ones) is well-understood and routinely taught in undergraduate courses, the thermodynamic and kinetic properties of N-component mixtures with N > 3 have remained relatively unexplored. An example of such a mixture is provided by the intracellular fluid, in which protein-rich droplets phase separate into distinct membraneless organelles. In this work, we investigate equilibrium phase behavior and morphology of N-component liquid mixtures within the Flory-Huggins theory of regular solutions. In order to determine the number of coexisting phases and their compositions, we developed a new algorithm for constructing complete phase diagrams, based on numerical convexification of the discretized free energy landscape. Together with a Cahn-Hilliard approach for kinetics, we employ this method to study mixtures with N = 4 and 5 components. We report on both the coarsening behavior of such systems, as well as the resulting morphologies in three spatial dimensions. We discuss how the number of coexisting phases and their compositions can be extracted with Principal Component Analysis (PCA) and K-means clustering algorithms. Finally, we discuss how one can reverse engineer the interaction parameters and volume fractions of components in order to achieve a range of desired packing structures, such as nested "Russian dolls" and encapsulated Janus droplets.
Publication Date: 2019
Citation: Mao, S, Kuldinow, D, Haataja, MP, Košmrlj, A. (2019). Phase behavior and morphology of multicomponent liquid mixtures. Soft Matter, 15 (1297 - 1311. doi:10.1039/c8sm02045k
DOI: doi:10.1039/c8sm02045k
Pages: 1297 - 1311
Type of Material: Journal Article
Journal/Proceeding Title: Soft Matter
Version: Author's manuscript

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.