Skip to main content

Decoding semantic representations from functional near-infrared spectroscopy signals

Author(s): Zinszer, Benjamin D.; Bayet, Laurie; Emberson, Lauren L.; Raizada, Rajeev D.S.; Aslin, Richard N.

To refer to this page use:
Abstract: This study uses representational similarity-based neural decoding to test whether semantic information elicited by words and pictures is encoded in functional near-infrared spectroscopy (fNIRS) data. In experiment 1, subjects passively viewed eight audiovisual word and picture stimuli for 15 min. Blood oxygen levels were measured using the Hitachi ETG-4000 fNIRS system with a posterior array over the occipital lobe and a left lateral array over the temporal lobe. Each participant’s response patterns were abstracted to representational similarity space and compared to the group average (excluding that subject, i.e., leave-one-out cross-validation) and to a distributional model of semantic representation. Mean accuracy for both decoding tasks significantly exceeded chance. In experiment 2, we compared three group-level models by averaging the similarity structures from sets of eight participants in each group. In these models, the posterior array was accurately decoded by the semantic model, while the lateral array was accurately decoded in the between-groups comparison. Our findings indicate that semantic representations are encoded in the fNIRS data, preserved across subjects, and decodable by an extrinsic representational model. These results are the first attempt to link the functional response pattern measured by fNIRS to higher-level representations of how words are related to each other.
Publication Date: 23-Aug-2017
Citation: Benjamin D. Zinszer, Laurie Bayet, Lauren L. Emberson, Rajeev D. S. Raizada, and Richard N. Aslin "Decoding semantic representations from functional near-infrared spectroscopy signals," Neurophotonics 5(1), 011003 (23 August 2017).
DOI: doi:10.1117/1.NPh.5.1.011003
ISSN: 2329-423X
Type of Material: Journal Article
Journal/Proceeding Title: Neurophotonics
Version: Final published version. This is an open access article.

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.