Skip to main content

Decoding semantic representations from functional near-infrared spectroscopy signals

Author(s): Zinszer, Benjamin D.; Bayet, Laurie; Emberson, Lauren L.; Raizada, Rajeev D.S.; Aslin, Richard N.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1jn0f
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZinszer, Benjamin D.-
dc.contributor.authorBayet, Laurie-
dc.contributor.authorEmberson, Lauren L.-
dc.contributor.authorRaizada, Rajeev D.S.-
dc.contributor.authorAslin, Richard N.-
dc.date.accessioned2019-10-28T15:55:29Z-
dc.date.available2019-10-28T15:55:29Z-
dc.date.issued2017-08-23en_US
dc.identifier.citationBenjamin D. Zinszer, Laurie Bayet, Lauren L. Emberson, Rajeev D. S. Raizada, and Richard N. Aslin "Decoding semantic representations from functional near-infrared spectroscopy signals," Neurophotonics 5(1), 011003 (23 August 2017). https://doi.org/10.1117/1.NPh.5.1.011003en_US
dc.identifier.issn2329-423X-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1jn0f-
dc.description.abstractThis study uses representational similarity-based neural decoding to test whether semantic information elicited by words and pictures is encoded in functional near-infrared spectroscopy (fNIRS) data. In experiment 1, subjects passively viewed eight audiovisual word and picture stimuli for 15 min. Blood oxygen levels were measured using the Hitachi ETG-4000 fNIRS system with a posterior array over the occipital lobe and a left lateral array over the temporal lobe. Each participant’s response patterns were abstracted to representational similarity space and compared to the group average (excluding that subject, i.e., leave-one-out cross-validation) and to a distributional model of semantic representation. Mean accuracy for both decoding tasks significantly exceeded chance. In experiment 2, we compared three group-level models by averaging the similarity structures from sets of eight participants in each group. In these models, the posterior array was accurately decoded by the semantic model, while the lateral array was accurately decoded in the between-groups comparison. Our findings indicate that semantic representations are encoded in the fNIRS data, preserved across subjects, and decodable by an extrinsic representational model. These results are the first attempt to link the functional response pattern measured by fNIRS to higher-level representations of how words are related to each other.en_US
dc.language.isoen_USen_US
dc.relation.ispartofNeurophotonicsen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleDecoding semantic representations from functional near-infrared spectroscopy signalsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1117/1.NPh.5.1.011003-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
011003_1.pdf1.37 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.