Skip to main content

Localization as an Entanglement Phase Transition in Boundary-Driven Anderson Models

Author(s): Gullans, Michael J; Huse, David A

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1j678w6n
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGullans, Michael J-
dc.contributor.authorHuse, David A-
dc.date.accessioned2022-01-25T15:03:02Z-
dc.date.available2022-01-25T15:03:02Z-
dc.date.issued2019-09-13en_US
dc.identifier.citationGullans, Michael J, Huse, David A. (2019). Localization as an Entanglement Phase Transition in Boundary-Driven Anderson Models. PHYSICAL REVIEW LETTERS, 123 (10.1103/PhysRevLett.123.110601en_US
dc.identifier.issn0031-9007-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1j678w6n-
dc.description.abstractThe Anderson localization transition is one of the most well studied examples of a zero temperature quantum phase transition. On the other hand, many open questions remain about the phenomenology of disordered systems driven far out of equilibrium. Here we study the localization transition in the prototypical three-dimensional, noninteracting Anderson model when the system is driven at its boundaries to induce a current carrying nonequilibrium steady state. Recently we showed that the diffusive phase of this model exhibits extensive mutual information of its nonequilibrium steady-state density matrix. We show that this extensive scaling persists in the entanglement and at the localization critical point, before crossing over to a short-range (area-law) scaling in the localized phase. We introduce an entanglement witness for fermionic states that we name the mutual coherence, which, for fermionic Gaussian states, is also a lower bound on the mutual information. Through a combination of analytical arguments and numerics, we determine the finite-size scaling of the mutual coherence across the transition. These results further develop the notion of entanglement phase transitions in open systems, with direct implications for driven many-body localized systems, as well as experimental studies of driven-disordered systems.en_US
dc.language.isoen_USen_US
dc.relation.ispartofPHYSICAL REVIEW LETTERSen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleLocalization as an Entanglement Phase Transition in Boundary-Driven Anderson Modelsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1103/PhysRevLett.123.110601-
dc.date.eissued2019-09-10en_US
dc.identifier.eissn1079-7114-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
PhysRevLett.123.110601.pdf352.45 kBAdobe PDFView/Download
EntTrans_Supp.pdf218.13 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.