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S1. SCALING ANALYSIS FOR THE MUTUAL COHERENCE

In this section, we use qualitative arguments based on single-parameter scaling theory [S1] to derive the
scaling behavior of the mutual coherence across the localization transition. Unlike the arguments based
on the random quantum circuit model discussed in the main text, the formalism introduced in this section
explicitly takes energy conservation into account. In principle, this formalism could be extended to derive
the behavior in the entire critical regime ξ/L ∼ 1; however, for simplicity, we focus on the behavior in the
two phases and at the critical point.

We can write a formula for the disorder averaged, non-equilibrium contribution to the mutual coherence
as a double-energy integral over scattering states

Cd(A : B) =
∑

x∈A,y∈B
Gd(x,y) =

∫
dE

∑
x∈A,y∈B

cdE(x,y)

∫
d∆ f(E,∆), (S1)

cdE(x,y) =
∣∣qdE(x,y)

∣∣2, (S2)

f(E,∆) =

∑
x,y[qdE+∆/2(x,y)]∗qdE−∆/2(x,y)∑

x∈A,y∈B cdE(x,y)
, (S3)

where cdE(x,y) is the disorder average of
∣∣qdE(x,y)

∣∣2 and f(E,∆) is an energy correlation function. This

formulation is convenient because the energy-resolved spatial correlation functions qs,dE (x,y) evolve under
an Anderson model

−i∂tqαE(x,y) =
∑
δ

qαE(x+ δ,y) + (Vx − E)qαE(x,y), (S4)

where δ indexes nearest neighbor sites. This implies that cdE(x,y) satisfies a diffusion equation for 0 < W <
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Wc [S2]

(iω +DE∇2
x)Y DE (x,x′, ω) = δ(x− x′), (S5)

cdE(x,y) =

∫
d3x′

∣∣JDEy(x′)
∣∣2 Y DE (x,x′, 0), (S6)

Y DE (x,x′, ω) = GAE+ω/2(x,x′)GRE−ω/2(x,x′), (S7)

where |JDEy(x′)|2 is an effective DC source term centered near x′ = y and Y DE (x,x′, ω) is the disorder

averaged density-density response function on the diffusive length scale (G
A/R
E are the retarded/advanced

Green’s functions). Since there is no diffusion in the leads, Y DE (x,x′, ω) has to satisfy the boundary condition
that it vanishes in the leads [S2]. As a result, this equation will have the solution

Y DE (x,x′, 0) =
1

4πDE |x− x′|
+ V Dx′ (x), |x− x′| � ξ, (S8)

where ξ ∼ |W −Wc|ν is the correlation length on the diffusive side and V Dx′ (x) is non-singular at x = x′ and
is chosen to satisfy the boundary conditions.

At a given energy there are strong fluctuations in both the density gradient and local current, which means
that the source term for the non-equilibrium density will simply scale as the difference in the Fermi functions,
|JDEy(x′)|2∼ [ndE ]2 = (nLE − nRE)2; however, the diffusive description is only valid for |x − x′| much greater

than the correlation length ξ, whereas the scaling cdE(x,y) ∼ [ndE ]2 only holds on lengths scales on the order
of the mean free path `. To match the two scales ` < |x− y| < ξ, we use the approximate description of the
critical regime in terms of a scale dependent diffusion constant [S1]

~∇x ·Dc(x− x′)~∇xY cE(x,x′, 0) = δ(x− x′), (S9)

where Dc(x−x′) ∼ |x−x′|2−d0 for spatial dimension d0. The solution to this anomalous diffusion equation
in the absence of boundaries is scale-invariant, which can be seen by rescaling space x → αx. Integrating
both sides of Eq. (S9) over a ball of radius ε and applying Green’s theorem in the limit ε→ 0 we find

Y cE(x,x′, 0) = − 1

4π
log(|x− x′|) + V cx′(x), (S10)

where V cx′(x) is non-singular at x = x′ and is needed to match the boundary conditions on Y cE away from
the source. The solution for the coherence field will then be given by

cdE(x,y) =

∫
d3x′

∣∣JcEy(x′)
∣∣2 Y cE(x,x′, 0), ξ > |x− y| � `. (S11)

Finally, in the vicinity of |x−y| & `, the diffusion constant saturates to its microscopic value D0E = vF `/d0

where vF is the Fermi velocity. The solution in the critical regime has the property that the amplitude
of cdE(x,y) is independent of the length scale, which implies that it inherits the scaling [ndE ]2 from the
microscopic regime. Matching this scaling to the diffusive region we arrive at the result

cdE(x,y) ∼ ξ [ndE ]2

|x− y|
, L0 � |x− y| & ξ. (S12)

The functional form for separations on the order of L0 can be found by solving the diffusion equation with
the appropriate boundary conditions at the leads, which inherits the scaling of Eq. (S12).

The mutual coherence also depends on the energy correlation function; however, this correlation function
will only have significant correlations on the scale of the Thouless energy ETh = D/L2

0. Assuming this
scaling, and using the fact that D ∼ 1/ξ, we arrive at an overall volume law scaling for the mutual coherence
in the low-temperature regime T � δµ that is independent of ξ

Cd(L : R) ∼
∫
dE[ndE ]2L3

0 ∼ |δµ|L3
0. (S13)
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At the critical point (ξ → ∞) there is no diffusive region and cdE(x,y) maintains an amplitude on the
order of [ndE ]2 throughout the entire sample. On the other hand, the Thouless energy is reduced to scale
as the level spacing ETh ∼ 1/L3

0 because that is the transit time through the sample in the presence of the
anomalous diffusion. In this case, we still find a volume law scaling for the mutual coherence, but its precise
prefactor will differ from the diffusive phase

Cd(L : R) ∼ |δµ|L3
0. (S14)

This scaling will persist until δµ approaches the mobility edge.

For the resonant states in the insulating phase W > Wc, the coherence field remains localized in the
region |x− y| . ξ with amplitude on the order of [ndE ]2, which strongly reduces the total amount of mutual
coherence. The energy correlation range is, however, much larger. A sensible upper bound is to use the level
spacing in the localized region ∼ 1/ξ3. Together these two scalings predict the upper bound for the scaling
for the mutual coherence in the localized phase

Cd(L : R) . |δµ|ξL2
0. (S15)

S2. CAVITY MODEL FOR LOCALIZED PHASE

In this section, we present a simplified cavity model to describe the mutual coherence in the localized phase.
Transport in the localized phase occurs through “resonant” states in the sample that have exponentially
small, but nearly equal, tunneling rates to both leads. These states give rise to narrow transmission peaks,
whose width is much less than the single-particle level spacing in the sample ∼ L−3

0 .

Since many qualitative aspects of the localized phase in 3D are present already in 1D, we consider a 1D
model of the form

H =
∑

x<0,x>L0

(c†xcx+1 + h.c.) + tL(c†0c1 + h.c.) + tR(c†L0
cL0+1 + h.c.) +

∑
n

ωnb
†
nbn

=
∑

x<0,x>L0

t(c†xcx+1 + h.c.) +
∑
n

(tLφ
n
1 b
†
nc0 + tRφ

n
L0
b†ncL0+1 + h.c.) +

∑
n

ωnb
†
nbn,

(S16)

where cx are fermion operators on an infinite lattice, the sample consists of sites 1, . . . , L0, with local tunneling
rates tL/R to the left/right lead (taken to be exponentially small in analogy to the resonant states), and
bn =

∑
x φ

n
xcx are operators that create eigenstates of the sample when tL = tR = 0 with energies ωn. For

a disordered system, φnx are the localized wavefunctions, but they could also be eigenstates of a finite chain
with hopping t0, in which case

ωn = 2t0 cos[nπ/(L0 + 1)], n = 1, . . . , L0, (S17)

φnx ∝ sin[nxπ/(L0 + 1)], x = 1, . . . , L0. (S18)

This effectively models a Fabrey-Perot cavity. The scattering state wavefunctions can be found from
Schrödinger’s equation

εkψ
k
0 = ψk−1 + tL

∑
n

φn1ψ
k
n, (S19)

εkψ
k
n = tLφ

n
1ψ

k
0 + ωnψ

k
n + tRφ

n
L0
ψkL0+1, (S20)

εkψ
k
L0+1 = ψkL0+2 + tR

∑
n

φnL0
ψkn, (S21)

where εk = 2 cos k is the energy of a scattering state in the lead with wavefunctions e±ikx. Assuming εk = ωn0
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for a given n0, we find the solution

ψkL0+1 = − tLφ
n0
1

tRφ
n0

L0

ψk0 , (S22)

ψkn =
tL

εk − ωn

(
φn1 − φnL0

φn0
1

φn0

L0

)
ψk0 , (S23)

ψkn0
=

e−ik

tLφ
n0
1

ψk0 −
∑
n 6=n0

tLφ
n
1

εk − ωn

(
φn1 − φnL0

φn0
1

φn0

L0

)
ψk0
φn0

1

, (S24)

ψkL0+2 = εkψ
k
L0+1 − tR

∑
n

φnL0
ψkn. (S25)

The transmission coefficient for a state incoming from the right lead is given by

t−k =
2i sin k

ψkL0+1 − e−ikψkL0+2

, (S26)

evaluated for ψk0 = 1. The solution to the right incoming scattering state wavefunction is then given by
Eqs. (S22) and (S25) with ψk0 = t−k . In the vicinity of a resonance, for t2L, t

2
R and δ = ωn0

− εk much less
than the level spacing in the sample, the transmission coefficient is approximately given by

t−k ≈
2i sin ke2ikφn0

1 φn0

L0
tLtR

φn02
1 t2L + φn02

L0
t2R − δeik

. (S27)

This corresponds to a Lorentzian profile about the resonance with a width given by the same result one
obtains from a Fermi’s golden rule calculation

γn0 = (φn02
1 t2L + φn02

L0
t2R) sin2 k. (S28)

The behavior of the current and density gradient in this cavity model is more subtle because one also has
to take into account the exponentially suppressed amplitude of the off-resonant states. We can gain some
intuition for the properties of this solution by considering a two-site system with n0 = 1. In this case, the
expectation value of the current and density gradient in the scattering state from the right lead with energy
εk are given by

JRk = i〈0|aRεk(c†1c2 − c
†
2c1)aR†εk |0〉 ∝ 2(φ1

1φ
2
2 − φ1

2φ
2
1)Im[ψk∗1 ψk2 ], (S29)

∇nRk = 〈0|aRεk(c†1c1 − c
†
2c2)aR†εk |0〉 ∝ 2(φ1

1φ
2
1 − φ1

2φ
2
2)Re[ψk∗1 ψk2 ]. (S30)

For a two mode system without disorder, one mode is symmetric and the other is anti-symmetric, implying
that the wavefunction coefficient is non-zero. From these expressions we can determine that the current and
density gradient on resonance both scale as |t−k |2 ∼ 1 when tL ∼ tR. On the other hand, the coherence
between the two sites actually diverges as

〈0|aRεkc
†
1c2a

R†
εk
|0〉 ∝ φ1

1φ
1
2|ψk1 |2 ∼ 1/t2L/R. (S31)

This implies that after summing over the scattering states in the vicinity of the resonance, which has a width
γ1 ∼ t2L/R, one finds that J ·∇n ∼ t2L/R and 〈c†1c2〉 ∼ 1. This is consistent with our intuitive picture that the
coherences are sourced at an exponentially slow rate, but live for an exponentially long time, leading to an
order one coherence density within each resonant localized state. The contribution to the current and mutual
coherence from scattering states that are far detuned in energy from the resonant states is exponentially
suppressed.
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S3. MUTUAL COHERENCE BOUNDS MUTUAL INFORMATION

In this section, we show that the mutual coherence serves as a generic lower bound to the mutual infor-
mation for Gaussian fermionic states. Near infinite temperature, the mutual coherence approximates the
mutual information and the fermionic entanglement negativity [S3].

The Renyi entropies can be expressed in terms of the correlation matrix G as

Sα(ρ) =
1

1− α
log Tr[ρα] =

1

1− α
Tr[log(Gα + (I−G)α)], α 6= 1, (S32)

S1(ρ) = −Tr[ρ log ρ] = −Tr[G logG]− Tr[(I−G) log(I−G)], (S33)

where Gij = Tr[ρc†i cj ] and the second equality in Eq. (S32) and Eq. (S33) holds for Gaussian fermionic
states that conserve particle number. To prove the bound on the mutual information I1(A : B) = S1(ρA) +
S1(ρB)− S1(ρAB), we first transform into a basis where G is diagonal in subspace A and B, i.e.,

UGU† = D + c, (S34)

D =

(
DA 0
0 DB

)
, (S35)

where D is a diagonal matrix with eigenvalues between 0 and 1 and c is only nonzero in the upper and lower
right blocks.

We define the particle number Np
AB = Tr[D] and hole number Nh

AB = NAB − Np
AB , where NAB is the

total number of sites in A and B. We introduce the single-particle/hole density matrices (i.e., positive,
semidefinite Hermitian matrices with unit trace) ρp = (D + c)/Np

AB and ρh = (I − D − c)/Nh
AB and the

diagonal density matrices ρpd = D/Np
AB and ρhd = (I−D)/Nh

AB . The mutual information can be written as
the sum of relative entropies in this NAB-dimensional Hilbert space

I1(A : B) = Np
ABS(ρp|ρpd) +Nh

ABS(ρh|ρhd), (S36)

where the relative entropy is defined as S(ρ|σ) = −Tr[ρ log σ] − S1(ρ). Using the bound on the relative
entropy S(ρ|σ) ≥ 1

2 ||ρ− σ||
2
1 and the inequality ||X||1≥ Tr[XY ]/||Y || [S5], we arrive at the bounds

Na
ABS(ρa|ρad) ≥ 1

2Na
AB

(
Tr[cG]

||G||

)2

=
1

2Na
AB

(
Tr [c2]

||G||

)2

≥ C(A : B)2

2Na
AB

. (S37)

Together, these two inequalities imply the lower bound

I1(A : B) ≥ NAB
2Np

ABN
h
AB

C(A : B)2. (S38)

As a result, when N
p/h
AB and C(A : B) are all extensive quantities (i.e., proportional to NAB), then the

mutual information must also be extensive.

One limit where C(A : B) is directly proportional to the mutual information is when the fermionic system
is close to an infinite temperature state with G = I

2 + δG. Expanding in powers of δG for any α > 0, we find

Sα(ρ) = N log 2− 2αTr[δG2] +O(Tr[δG3]), (S39)

I1(A : B) = 2C(A : B). (S40)

Using identities proved in [S6], one can show that the fermionic entanglement negativity [S3] can also be
approximated in terms of the mutual coherence when the system is near infinite temperature.
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[S4] M.-C. Bañuls, J. I. Cirac, and M. M. Wolf, Entanglement in fermionic systems, Phys. Rev. A 76, 022311 (2007).

[S5] M. M. Wolf, F. Verstraete, M. B. Hastings, and J. I. Cirac, Area laws in quantum systems: Mutual information

and correlations, Phys. Rev. Lett. 100, 070502 (2008).

[S6] J. Eisert, V. Eisler, and Z. Zimborás, Entanglement negativity bounds for fermionic gaussian states, Phys. Rev.

B 97, 165123 (2018).


