A Dual-Mechanism Antibiotic Kills Gram-Negative Bacteria and Avoids Drug Resistance
Author(s): Martin, James K; Sheehan, Joseph P; Bratton, Benjamin P; Moore, Gabriel M; Mateus, André; et al
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1hq3rz4j
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Martin, James K | - |
dc.contributor.author | Sheehan, Joseph P | - |
dc.contributor.author | Bratton, Benjamin P | - |
dc.contributor.author | Moore, Gabriel M | - |
dc.contributor.author | Mateus, André | - |
dc.contributor.author | Li, Sophia Hsin-Jung | - |
dc.contributor.author | Kim, Hahn | - |
dc.contributor.author | Rabinowitz, Joshua D | - |
dc.contributor.author | Typas, Athanasios | - |
dc.contributor.author | Savitski, Mikhail M | - |
dc.contributor.author | Wilson, Maxwell Z | - |
dc.contributor.author | Gitai, Zemer | - |
dc.date.accessioned | 2023-12-14T20:08:23Z | - |
dc.date.available | 2023-12-14T20:08:23Z | - |
dc.date.issued | 2020-06-25 | en_US |
dc.identifier.citation | Martin, James K, Sheehan, Joseph P, Bratton, Benjamin P, Moore, Gabriel M, Mateus, André, Li, Sophia Hsin-Jung, Kim, Hahn, Rabinowitz, Joshua D, Typas, Athanasios, Savitski, Mikhail M, Wilson, Maxwell Z, Gitai, Zemer. (2020). A Dual-Mechanism Antibiotic Kills Gram-Negative Bacteria and Avoids Drug Resistance.. Cell, 181 (7), 1518 - 1532.e14. doi:10.1016/j.cell.2020.05.005 | en_US |
dc.identifier.issn | 0092-8674 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1hq3rz4j | - |
dc.description.abstract | The rise of antibiotic resistance and declining discovery of new antibiotics has created a global health crisis. Of particular concern, no new antibiotic classes have been approved for treating Gram-negative pathogens in decades. Here, we characterize a compound, SCH-79797, that kills both Gram-negative and Gram-positive bacteria through a unique dual-targeting mechanism of action (MoA) with undetectably low resistance frequencies. To characterize its MoA, we combined quantitative imaging, proteomic, genetic, metabolomic, and cell-based assays. This pipeline demonstrates that SCH-79797 has two independent cellular targets, folate metabolism and bacterial membrane integrity, and outperforms combination treatments in killing methicillin-resistant Staphylococcus aureus (MRSA) persisters. Building on the molecular core of SCH-79797, we developed a derivative, Irresistin-16, with increased potency and showed its efficacy against Neisseria gonorrhoeae in a mouse vaginal infection model. This promising antibiotic lead suggests that combining multiple MoAs onto a single chemical scaffold may be an underappreciated approach to targeting challenging bacterial pathogens. | en_US |
dc.format.extent | 1518 - 1532.e14 | en_US |
dc.language | eng | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | Cell | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | A Dual-Mechanism Antibiotic Kills Gram-Negative Bacteria and Avoids Drug Resistance | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1016/j.cell.2020.05.005 | - |
dc.identifier.eissn | 1097-4172 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
A_dual_mechanism_gram_negative_bacteria_drug_resistance.pdf | 1.58 MB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.