Liquid ropes: a geometrical model for thin viscous jet instabilities.
Author(s): Brun, P-T; Audoly, Basile; Ribe, Neil M; Eaves, TS; Lister, John R
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1gk1d
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Brun, P-T | - |
dc.contributor.author | Audoly, Basile | - |
dc.contributor.author | Ribe, Neil M | - |
dc.contributor.author | Eaves, TS | - |
dc.contributor.author | Lister, John R | - |
dc.date.accessioned | 2021-10-08T19:58:05Z | - |
dc.date.available | 2021-10-08T19:58:05Z | - |
dc.date.issued | 2015-05 | en_US |
dc.identifier.citation | Brun, P-T, Audoly, Basile, Ribe, Neil M, Eaves, TS, Lister, John R. (2015). Liquid ropes: a geometrical model for thin viscous jet instabilities.. Physical review letters, 114 (17), 174501 - ?. doi:10.1103/physrevlett.114.174501 | en_US |
dc.identifier.issn | 0031-9007 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1gk1d | - |
dc.description.abstract | Thin, viscous fluid threads falling onto a moving belt behave in a way reminiscent of a sewing machine, generating a rich variety of periodic stitchlike patterns including meanders, W patterns, alternating loops, and translated coiling. These patterns form to accommodate the difference between the belt speed and the terminal velocity at which the falling thread strikes the belt. Using direct numerical simulations, we show that inertia is not required to produce the aforementioned patterns. We introduce a quasistatic geometrical model which captures the patterns, consisting of three coupled ordinary differential equations for the radial deflection, the orientation, and the curvature of the path of the thread’s contact point with the belt. The geometrical model reproduces well the observed patterns and the order in which they appear as a function of the belt speed. | en_US |
dc.format.extent | 174501 - ? | en_US |
dc.language | eng | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | Physical review letters | en_US |
dc.rights | Final published version. Article is made available in OAR by the publisher's permission or policy. | en_US |
dc.title | Liquid ropes: a geometrical model for thin viscous jet instabilities. | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1103/physrevlett.114.174501 | - |
dc.identifier.eissn | 1079-7114 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
geometrical_model_viscous_instabilities.pdf | 823.13 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.