Contrast between Lagrangian and Eulerian analytic regularity properties of Euler equations
Author(s): Constantin, Peter; Kukavica, Igor; Vicol, Vlad C.
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1g061
Abstract: | We consider the incompressible Euler equations on RdRd or TdTd, where d∈{2,3}d∈{2,3}. We prove that: (a) In Lagrangian coordinates the equations are locally well-posed in spaces with fixed real-analyticity radius (more generally, a fixed Gevrey-class radius). (b) In Lagrangian coordinates the equations are locally well-posed in highly anisotropic spaces , e.g. Gevrey-class regularity in the label a1a1 and Sobolev regularity in the labels a2,…,ada2,…,ad. (c) In Eulerian coordinates both results (a) and (b) above are false. |
Publication Date: | Nov-2016 |
Electronic Publication Date: | 3-Aug-2015 |
Citation: | Constantin, Peter, Kukavica, Igor, Vicol, Vlad. (Contrast between Lagrangian and Eulerian analytic regularity properties of Euler equations. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 33 (1569 - 1588. doi:10.1016/j.anihpc.2015.07.002 |
DOI: | doi:10.1016/j.anihpc.2015.07.002 10.1016/j.anihpc.2015.07.002 |
ISSN: | 0294-1449 |
EISSN: | 1873-1430 |
Pages: | 1569 - 1588 |
Type of Material: | Journal Article |
Journal/Proceeding Title: | ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE |
Version: | Author's manuscript |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.