Skip to main content

Contrast between Lagrangian and Eulerian analytic regularity properties of Euler equations

Author(s): Constantin, Peter; Kukavica, Igor; Vicol, Vlad C.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1g061
Full metadata record
DC FieldValueLanguage
dc.contributor.authorConstantin, Peter-
dc.contributor.authorKukavica, Igor-
dc.contributor.authorVicol, Vlad C.-
dc.date.accessioned2017-11-21T19:15:11Z-
dc.date.available2017-11-21T19:15:11Z-
dc.date.issued2016-11en_US
dc.identifier.citationConstantin, Peter, Kukavica, Igor, Vicol, Vlad. (Contrast between Lagrangian and Eulerian analytic regularity properties of Euler equations. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 33 (1569 - 1588. doi:10.1016/j.anihpc.2015.07.002en_US
dc.identifier.issn0294-1449-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1g061-
dc.description.abstractWe consider the incompressible Euler equations on RdRd or TdTd, where d∈{2,3}d∈{2,3}. We prove that: (a) In Lagrangian coordinates the equations are locally well-posed in spaces with fixed real-analyticity radius (more generally, a fixed Gevrey-class radius). (b) In Lagrangian coordinates the equations are locally well-posed in highly anisotropic spaces , e.g. Gevrey-class regularity in the label a1a1 and Sobolev regularity in the labels a2,…,ada2,…,ad. (c) In Eulerian coordinates both results (a) and (b) above are false.en_US
dc.format.extent1569 - 1588en_US
dc.language.isoenen_US
dc.relation.ispartofANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIREen_US
dc.rightsAuthor's manuscripten_US
dc.titleContrast between Lagrangian and Eulerian analytic regularity properties of Euler equationsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1016/j.anihpc.2015.07.002-
dc.identifier.doi10.1016/j.anihpc.2015.07.002-
dc.date.eissued2015-08-03en_US
dc.identifier.eissn1873-1430-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1504.00727v2.pdf208.23 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.