Skip to main content

Data Mining When Each Data Point is a Network

Author(s): Rajendran, K; Kattis, A; Holiday, A; Kondor, R; Kevrekidis, Yannis G.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1fg1x
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRajendran, K-
dc.contributor.authorKattis, A-
dc.contributor.authorHoliday, A-
dc.contributor.authorKondor, R-
dc.contributor.authorKevrekidis, Yannis G.-
dc.date.accessioned2021-10-08T19:58:26Z-
dc.date.available2021-10-08T19:58:26Z-
dc.date.issued2017-01-01en_US
dc.identifier.citationRajendran, K, Kattis, A, Holiday, A, Kondor, R, Kevrekidis, IG. (2017). Data Mining When Each Data Point is a Network. Springer Proceedings in Mathematics and Statistics, 205 (289 - 317). doi:10.1007/978-3-319-64173-7_17en_US
dc.identifier.issn2194-1009-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1fg1x-
dc.description.abstract© Springer International Publishing AG 2017. We discuss the problem of extending data mining approaches to cases in which data points arise in the form of individual graphs. Being able to find the intrinsic low-dimensionality in ensembles of graphs can be useful in a variety of modeling contexts, especially when coarse-graining the detailed graph information is of interest. One of the main challenges in mining graph data is the definition of a suitable pairwise similarity metric in the space of graphs. We explore two practical solutions to solving this problem: one based on finding subgraph densities, and one using spectral information. The approach is illustrated on three test data sets (ensembles of graphs); two of these are obtained from standard literature graph generating algorithms, while the graphs in the third example are sampled as dynamic snapshots from an evolving network simulation. We further combine these approaches with equation free techniques, demonstrating how such data mining can enhance scientific computation of network evolution dynamics.en_US
dc.format.extent289 - 317en_US
dc.language.isoen_USen_US
dc.relation.ispartofSpringer Proceedings in Mathematics and Statisticsen_US
dc.rightsAuthor's manuscripten_US
dc.titleData Mining When Each Data Point is a Networken_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1007/978-3-319-64173-7_17-
dc.identifier.eissn2194-1017-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
Data_Mining_Each_Point_ Network.pdf4.57 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.