Skip to main content

Universal hidden order in amorphous cellular geometries.

Author(s): Klatt, Michael A.; Lovrić, Jakov; Chen, Duyu; Kapfer, Sebastian C.; Schaller, Fabian M.; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1fb9q
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKlatt, Michael A.-
dc.contributor.authorLovrić, Jakov-
dc.contributor.authorChen, Duyu-
dc.contributor.authorKapfer, Sebastian C.-
dc.contributor.authorSchaller, Fabian M.-
dc.contributor.authorSchönhöfer, Philipp W.A.-
dc.contributor.authorGardiner, Bruce S.-
dc.contributor.authorSmith, Ana-Sunčana-
dc.contributor.authorSchröder-Turk, Gerd E.-
dc.contributor.authorTorquato, Salvatore-
dc.date.accessioned2020-10-30T18:29:27Z-
dc.date.available2020-10-30T18:29:27Z-
dc.date.issued2019-02-18en_US
dc.identifier.citationKlatt, Michael A., Lovrić, Jakov, Chen, Duyu, Kapfer, Sebastian C., Schaller, Fabian M., Schönhöfer, Philipp W.A., Gardiner, Bruce S., Smith, Ana-Sunčana, Schröder-Turk, Gerd E., Torquato, Salvatore. (2019). Universal hidden order in amorphous cellular geometries.. Nature communications, 10 (1), 811 pgs.1-9. doi:10.1038/s41467-019-08360-5en_US
dc.identifier.issn2041-1723-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1fb9q-
dc.descriptionVolume 10, Issue 1, 1 December 2019, Article number 811en_US
dc.description.abstractPartitioning space into cells with certain extreme geometrical properties is a central problem in many fields of science and technology. Here we investigate the Quantizer problem, defined as the optimisation of the moment of inertia of Voronoi cells, i.e., similarly-sized 'sphere-like' polyhedra that tile space are preferred. We employ Lloyd's centroidal Voronoi diagram algorithm to solve this problem and find that it converges to disordered states associated with deep local minima. These states are universal in the sense that their structure factors are characterised by a complete independence of a wide class of initial conditions they evolved from. They moreover exhibit an anomalous suppression of long-wavelength density fluctuations and quickly become effectively hyperuniform. Our findings warrant the search for novel amorphous hyperuniform phases and cellular materials with unique physical properties.en_US
dc.format.extent10.1:811, 1-9en_US
dc.languageengen_US
dc.language.isoen_USen_US
dc.relation.ispartofNature communicationsen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleUniversal hidden order in amorphous cellular geometries.en_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1038/s41467-019-08360-5-
dc.identifier.eissn2041-1723-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
s41467-019-08360-5.pdf3.32 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.