Skip to main content

Stern Layer Structure and Energetics at Mica–Water Interfaces

Author(s): Bourg, Ian C; Lee, Sang Soo; Fenter, Paul; Tournassat, Christophe

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1f76670d
Abstract: The screening of surface charge by dissolved ions at solid−liquid interfacesin the region of interfacial fluid known as the electrical double layer (EDL)plays a recurrent role in surface science, from ion adsorption to colloidal mechanics to the transport properties of nanoporous media. A persistent unknown in theories of EDL-related phenomena is the structure of the Stern layer, the near-surface portion of the EDL where water molecules and adsorbed ions form specific short-range interactions with surface atoms. Here, we describe a set of synchrotron X-ray reflectivity (XRR) experiments and molecular dynamics (MD) simulations carried out under identical conditions for a range of 0.1 M alkali chloride (Li-, Na-, K-, Rb-, or CsCl) solutions on the basal surface of muscovite mica, a mineral isostructural to phyllosilicate clay minerals and one of the most widely studied reference surfaces in interfacial science. Our XRR and MD simulation results provide a remarkably consistent view of the structure and energetics of the Stern layer, with some discrepancy on the fraction of the minor outer-sphere component of Rb and on the adsorption energetics of Li. The results of both techniques, along with surface complexation model calculations, provide insight into the sensitivity of water structure and ion adsorption to surface topography and the type of adsorbed counterion
Publication Date: 11-Apr-2017
Electronic Publication Date: 2017
Citation: Bourg, Ian C, Lee, Sang Soo, Fenter, Paul, Tournassat, Christophe. (2017). Stern Layer Structure and Energetics at Mica–Water Interfaces. The Journal of Physical Chemistry C, 121 (17), 9402 - 9412. doi:10.1021/acs.jpcc.7b01828
DOI: doi:10.1021/acs.jpcc.7b01828
ISSN: 1932-7447
EISSN: 1932-7455
Pages: 9402 - 9412
Language: en
Type of Material: Journal Article
Journal/Proceeding Title: The Journal of Physical Chemistry C
Version: Final published version. This is an open access article.



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.