Skip to main content

Hyperuniformity and anti-hyperuniformity in one-dimensional substitution tilings.

Author(s): Oğuz, Erdal C.; Socolar, Joshua E.S.; Steinhardt, Paul J.; Torquato, Salvatore

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1dj6d
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOğuz, Erdal C.-
dc.contributor.authorSocolar, Joshua E.S.-
dc.contributor.authorSteinhardt, Paul J.-
dc.contributor.authorTorquato, Salvatore-
dc.date.accessioned2020-10-30T18:29:17Z-
dc.date.available2020-10-30T18:29:17Z-
dc.date.issued2019-01en_US
dc.identifier.citationOğuz, Erdal C., Socolar, Joshua E.S., Steinhardt, Paul J., Torquato, Salvatore. (2019). Hyperuniformity and anti-hyperuniformity in one-dimensional substitution tilings.. Acta crystallographica. Section A, Foundations and advances, 75 (Pt 1), 3 - 13. doi:10.1107/S2053273318015528en_US
dc.identifier.issn2053-2733-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1dj6d-
dc.description.abstractThis work considers the scaling properties characterizing the hyperuniformity (or anti-hyperuniformity) of long-wavelength fluctuations in a broad class of one-dimensional substitution tilings. A simple argument is presented which predicts the exponent α governing the scaling of Fourier intensities at small wavenumbers, tilings with α > 0 being hyperuniform, and numerical computations confirm that the predictions are accurate for quasiperiodic tilings, tilings with singular continuous spectra and limit-periodic tilings. Quasiperiodic or singular continuous cases can be constructed with α arbitrarily close to any given value between -1 and 3. Limit-periodic tilings can be constructed with α between -1 and 1 or with Fourier intensities that approach zero faster than any power law.en_US
dc.format.extent1 - 13en_US
dc.languageengen_US
dc.language.isoen_USen_US
dc.relation.ispartofActa crystallographica. Section A, Foundations and advancesen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleHyperuniformity and anti-hyperuniformity in one-dimensional substitution tilings.en_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1107/S2053273318015528-
dc.identifier.eissn2053-2733-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
OA_Hyperuniformity_anti_hyperuniformity_onedimensional_substitution_tilings.pdf824.5 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.