Large charges on the Wilson loop in $$ \mathcal{N} $$ = 4 SYM. Part II. Quantum fluctuations, OPE, and spectral curve
Author(s): Giombi, Simone; Komatsu, Shota; Offertaler, Bendeguz
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1d795b2b
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Giombi, Simone | - |
dc.contributor.author | Komatsu, Shota | - |
dc.contributor.author | Offertaler, Bendeguz | - |
dc.date.accessioned | 2024-04-22T17:56:11Z | - |
dc.date.available | 2024-04-22T17:56:11Z | - |
dc.date.issued | 2022-08-01 | en_US |
dc.identifier.citation | Giombi, Simone, Komatsu, Shota, Offertaler, Bendeguz. (2022). Large charges on the Wilson loop in $$ \mathcal{N} $$ = 4 SYM. Part II. Quantum fluctuations, OPE, and spectral curve. Journal of High Energy Physics, 2022 (8), 10.1007/jhep08(2022)011 | en_US |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1d795b2b | - |
dc.description.abstract | <jats:title>A<jats:sc>bstract</jats:sc> </jats:title><jats:p>We continue our study of large charge limits of the defect CFT defined by the half-BPS Wilson loop in planar <jats:inline-formula><jats:alternatives><jats:tex-math>$$ \mathcal{N} $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>N</mml:mi> </mml:math></jats:alternatives></jats:inline-formula> = 4 supersymmetric Yang-Mills theory. In this paper, we compute 1<jats:italic>/J</jats:italic> corrections to the correlation function of two heavy insertions of charge <jats:italic>J</jats:italic> and two light insertions, in the double scaling limit where the charge <jats:italic>J</jats:italic> and the ’t Hooft coupling <jats:italic>λ</jats:italic> are sent to infinity with the ratio <jats:italic>J/</jats:italic><jats:inline-formula><jats:alternatives><jats:tex-math>$$ \sqrt{\lambda } $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>λ</mml:mi> </mml:msqrt> </mml:math></jats:alternatives></jats:inline-formula> fixed. Holographically, they correspond to quantum fluctuations around a classical string solution with large angular momentum, and can be computed by evaluating Green’s functions on the worldsheet. We derive a representation of the Green’s functions in terms of a sum over residues in the complexified Fourier space, and show that it gives rise to the conformal block expansion in the heavy-light channel. This allows us to extract the scaling dimensions and structure constants for an infinite tower of non-protected dCFT operators. We also find a close connection between our results and the semi-classical integrability of the string sigma model. The series of poles of the Green’s functions in Fourier space corresponds to points on the spectral curve where the so-called quasi-momentum satisfies a quantization condition, and both the scaling dimensions and the structure constants in the heavy-light channel take simple forms when written in terms of the spectral curve. These observations suggest extensions of the results by Gromov, Schafer-Nameki and Vieira on the semiclassical energy of closed strings, and in particular hint at the possibility of determining the structure constants directly from the spectral curve.</jats:p> | en_US |
dc.language | en | en_US |
dc.relation.ispartof | Journal of High Energy Physics | en_US |
dc.rights | Final published version. This is an open access article. | en_US |
dc.subject | AdS-CFT Correspondence, Wilson, ’t Hooft and Polyakov loops | en_US |
dc.title | Large charges on the Wilson loop in $$ \mathcal{N} $$ = 4 SYM. Part II. Quantum fluctuations, OPE, and spectral curve | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1007/jhep08(2022)011 | - |
dc.date.eissued | 2022-08-01 | en_US |
dc.identifier.eissn | 1029-8479 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
JHEP08(2022)011.pdf | 5.16 MB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.