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Abstract: We continue our study of large charge limits of the defect CFT defined by the
half-BPS Wilson loop in planar N = 4 supersymmetric Yang-Mills theory. In this paper,
we compute 1/J corrections to the correlation function of two heavy insertions of charge J
and two light insertions, in the double scaling limit where the charge J and the ’t Hooft
coupling λ are sent to infinity with the ratio J/

√
λ fixed. Holographically, they correspond

to quantum fluctuations around a classical string solution with large angular momentum,
and can be computed by evaluating Green’s functions on the worldsheet. We derive a
representation of the Green’s functions in terms of a sum over residues in the complexified
Fourier space, and show that it gives rise to the conformal block expansion in the heavy-light
channel. This allows us to extract the scaling dimensions and structure constants for an
infinite tower of non-protected dCFT operators. We also find a close connection between
our results and the semi-classical integrability of the string sigma model. The series of
poles of the Green’s functions in Fourier space corresponds to points on the spectral curve
where the so-called quasi-momentum satisfies a quantization condition, and both the scaling
dimensions and the structure constants in the heavy-light channel take simple forms when
written in terms of the spectral curve. These observations suggest extensions of the results
by Gromov, Schafer-Nameki and Vieira on the semiclassical energy of closed strings, and in
particular hint at the possibility of determining the structure constants directly from the
spectral curve.
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1 Introduction

Wilson loops are fundamental observables in any gauge theory. They provide a natural
basis of gauge-invariant operators, play the role of order parameter for the confinement-
deconfinement transition, and satisfy a set of non-perturbative Schwinger-Dyson equations
called the loop equations [1, 2], which are especially useful in two dimensions1 [4, 5].

In the maximally supersymmetric gauge theory in four dimensions known as N = 4
supersymmetric Yang-Mills (SYM) theory, one can define generalizations of the usual Wilson
loop that couple to scalar fields and preserve a fraction of supersymmetry. Of particular
importance among them is the half-BPS Wilson loop, which couples to a single scalar field
and is defined on a circular (or infinite straight line) contour. Thanks to extensive research
in the past few years, it has become clear that the half-BPS Wilson loop provides an ideal
testing ground for various non-perturbative approaches in quantum field theory.

Firstly, the half-BPS Wilson loop preserves a one-dimensional superconformal group
OSp(4∗|4) [6–8] and provides a canonical example of a one-dimensional defect conformal
field theory (CFT) [9]. This enables one to study the correlation functions of insertions
on the Wilson loop using both analytical and numerical bootstrap techniques [10–13].
Secondly, there exists a “topological” subsector of this defect CFT (dCFT) in which the
correlation functions become position-independent and can be computed analytically as
nontrivial functions of the ’t Hooft coupling λ(≡ g2

YMN) using the method of supersymmetric
localization [14–18]. This led to a rigorous determination of an infinite set of defect conformal
data on the half-BPS Wilson loop, which provided important inputs for the conformal
bootstrap analysis. Thirdly, the half-BPS Wilson loop in the fundamental representation
is holographically dual to an open string minimal surface extending in the AdS2 subspace
of AdS5 × S5. Using this dual representation, one can study the correlation functions
of insertions at strong coupling via perturbation theory of the string sigma model [19].
Finally, the operator insertions on the half-BPS Wilson loop can be mapped to states in
an integrable open spin chain and their spectrum can in principle be determined exactly
using integrability techniques [8, 20–23]. The three- and higher-point functions also seem
amenable to the integrability machinery [24, 25], in particular to the so-called hexagon
formalism [26–28], although more work is needed to fully develop the formalism.

The study of the half-BPS Wilson loop also allows one to explore the cross-fertilization
of different techniques. For instance, the correlation functions in the topological subsector
computed from supersymmetric localization in [14, 15] can be recast into an integral of
Q-functions, which are the most basic quantities in the integrability formalism [29]. This
strongly hints at the applicability of integrability to correlation functions and also suggests a
deep connection between integrability and supersymmetric localization. In addition, a recent
study [13] demonstrated that one can determine conformal data to remarkable numerical
precision by combining the numerical conformal bootstrap and the spectral data computed
from integrability. Alternatively, one can use the conformal bootstrap to extend the results
from perturbation theory: this has been demonstrated explicitly in [11], which computed

1Intersecting 1/8 BPS Wilson loops in N = 4 SYM can also be computed using the loop equation of
two-dimensional Yang-Mills theory as shown in [3].
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the three-loop corrections at strong coupling by imposing the crossing symmetry of the
four-point functions. A similar analysis at weak coupling has not been fully developed but
a few direct perturbative results, which would provide starting points of such computations,
are available in the literature [25, 30–33]. Furthermore, the half-BPS Wilson loop provides
a simple example of defect renormalization group flow, which connects the ordinary Wilson
loop without scalar couplings to the half-BPS loop [34]. The defect renormalization group
flow can be studied both at weak and strong couplings [35, 36] (see also [37–39] for related
recent works) and it allows one to explicitly check the monotonicity of the defect entropy,
which was proven recently in [40].

The goal of this paper and its companion [41] is to explore a connection to yet
another non-perturbative approach — the large charge expansion of conformal field theory.
Starting from the seminal works [42, 43], general properties of the large charge sector in
interacting CFTs with global symmetries have been actively explored in recent years using
effective field theory techniques and treating the inverse of the charge as a small expansion
parameter [44–48]. In the Wilson loop defect CFT, the simplest analog of the large charge
sector is given by the correlation functions of two insertions with R-charge J and several
light insertions in the limit

J →∞ , λ→∞ ,
J√
λ

: fixed . (1.1)

In this regime, the role of the large charge effective field theory is played by a probe string
action in AdS5 × S5, which becomes classical in the large J limit. As we demonstrated in
the previous paper [41], the leading large charge answer for the correlation functions can be
computed by evaluating light vertex operators on a nontrivial classical string solution with
large angular momentum, which was constructed in [8, 49, 50]. In special kinematics, we can
compare the results from holography with exact results from supersymmetric localization [14]
and verify the agreement of the two approaches.

In this paper, we consider the leading 1/J corrections to the results computed in the
previous paper. In the double scaling limit (1.1), this is equivalent to studying 1/

√
λ

corrections, which correspond to quantum fluctuations on the string worldsheet. For
simplicity, we focus on the four-point functions — namely, the correlation functions of
two large charge insertions and two light insertions. We compute them by evaluating the
Green’s functions of light fluctuations around the classical string solution with large angular
momentum, and sending the endpoints of the Green’s functions to the boundaries of the
worldsheet (see figure 1). The results for the Green’s functions are given by integrals over
Fourier modes, which take the following schematic form,

G(r, τ ; r′, τ ′) r>r
′
∼

∫ ∞
−∞

dk eik(τ−τ ′) g
R(r; k)gL(r′; k)
〈gR, gL〉

. (1.2)

Here, G is the Green’s function, r and τ are the coordinates on the worldsheet, gL and gR
are solutions to the same second-order differential equation (which turns out to be of the
Lamé type) that satisfy gL → 0 (gR → 0) at the left (right) boundary of the worldsheet,
and, finally,

〈
gR, gL

〉
is the Wronskian of the two solutions (which is a position-independent
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Figure 1. A sketch of the setup. In the radial quantization, a single BPS Wilson loop is mapped
to two straight lines in R× S3 (which are connected with each other at future and past infinities)
while the operator insertions with large charges (ZJ and Z̄J in the figure) are mapped to a state
defined on S3 in the presence of the Wilson lines. This setup is holographically dual to a string
worldsheet anchored at the Wilson lines at the boundary (the blue strip in the figure). To compute
the four-point function, we evaluate the Green’s function (the red segment in the figure) and push the
endpoints to the boundary. This gives the correlation function of two heavy insertions and two light
fluctuations on the worldsheet. The picture shows the case where the endpoints are sent to the same
boundary on the strip, which gives the four-point function in the “heavy-heavy-light-light” ordering.
One may also send the endpoints to opposite boundaries, which gives the “heavy-light-heavy-light”
ordering of the correlation function. See figure 4 for more details.

function of k). The integrand has poles in the upper-half k plane where the Wronskian
vanishes.2 Picking up the residues from those poles, we can rewrite (1.2) as a discrete
sum, which turns out to precisely reproduce the conformal block expansion in the heavy-
light channel. This allows us to read off conformal data of the Wilson loop defect CFT,
including the conformal dimensions of (infinitely many) non-protected heavy operators and
the “heavy-heavy-light” structure constants.

In addition, the discrete sum representation has a tantalizing connection to integrability,
and in particular to the spectral curve and the so-called quasi-momentum. The spectral
curve is one of the fundamental concepts in the classical integrability of the string sigma
model: it encodes infinitely many conserved charges as its period integrals and it arises as
the semiclassical limit of the Bethe equations, in which the Bethe roots — i.e., the solutions
to the Bethe equations — clump up and form branch cuts [51, 52]. The quasi-momentum
p(x) is a function on the spectral curve that satisfies certain analyticity properties and the
integral of p(x)d(x+ 1/x) gives the period integrals on the spectral curve.

2At the positions of the poles, the two solutions gR,L become linearly dependent and there exists a
solution to the differential equation that vanishes at both boundaries of the worldsheet. Physically, such a
solution corresponds to a normalizable excitation on the worldsheet.
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As we will show below, each term in the discrete sum corresponds to a point on the
spectral curve satisfying a “quantization condition” p(xn) = nπ with n ∈ N, and the defect
CFT data in the heavy-light channel is given by simple functions on the spectral curve. A
similar observation was made by Gromov, Schafer-Nameki and Vieira [53], who developed
an efficient method to compute the semiclassical energy of closed strings by expressing it as
a function on the spectral curve. A novelty of our results is that we find that the structure
constants, not just the energy of the string (or, equivalently, the conformal dimension),
simplify when written in terms of the spectral parameter x. This hints at an extension of
the analysis of [53] to the three-point functions and suggests it may be possible to compute
them directly from the spectral curve and classical integrability, without explicit reference
to string solutions.

Outline of the paper. The rest of the paper is organized as follows: in section 2, we
summarize the basics of the four-point functions of insertions on the half-BPS Wilson
loop, including the superconformal Ward identities and the definition of the large charge
limit. We also present the main results for the four point functions that we will derive
in later sections. In section 3, we review the classical string solution describing the large
charge insertions and compute quadratic fluctuations around it. We also explain how to
extract the four-point function of two large charge insertions and two light insertions from
Green’s functions of light fluctuations. In section 4, we derive an integral representation
of Green’s functions and later recast it into a discrete sum by picking up the residues of
the poles in the complexified Fourier space. The discrete sum can be identified with the
conformal block expansion in the heavy-light channel. Using this fact, in section 5 we read
off the conformal dimensions of infinitely many heavy operators and the “heavy-heavy-light”
structure constants. We also study the behavior of the correlators and OPE data at small
and large J/

√
λ. In section 6, we discuss a connection to integrability. We show that each

term in the sum corresponds to a point on the spectral curve satisfying a quantization
condition and derive simple expressions for the conformal dimensions and the structure
constants as functions of the spectral parameter. In section 7, we conclude and discuss
future directions. Several appendices are included to explain technical details.

2 Four-point defect correlators with large charge

2.1 Preliminaries

This paper continues the analysis started in [41]. Let us briefly review the setup. We start
with the (Maldacena-)Wilson operator in N = 4 SYM:

W ≡ 1
N

Tr P exp
(∮ (

iAµ(x)ẋµ + |ẋ|Y IΦI(x)
)
dt

)
. (2.1)

Here xµ(t) is a closed contour in R4 (we work in Euclidean signature), Y I(t) is a closed
contour in S5 (i.e., δIJY IY J = 1, where I, J = 1, . . . , 6), and the trace is taken in the
fundamental representation of the gauge group, which we take to be U(N). The gauge field
Aµ and the scalars ΦI transform in the adjoint representation of U(N). We are interested in
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the special case of the half-BPS Wilson line, for which the spacetime contour is an infinite
straight line and Y I is a point in S5 (equivalently, one may consider a circular contour after
a conformal transformation). For concreteness, we let xµ(t) = (t, 0, 0, 0) and Y IΦI = Φ6.
The symmetries preserved by the Wilson line form the one-dimensional superconformal
group, OSp(4∗|4) ⊂ PSU(2, 2|4), which includes 16 supercharges and the bosonic subgroup
SL(2,R)× SO(3)× SO(5). Here, SL(2,R) are the conformal symmetries of the Wilson line,
SO(3) are the spacetime rotations about the line, and SO(5) is the R-symmetry subgroup
that rotates the scalars not coupled to the Wilson line.

The Wilson line defines a one-dimensional defect CFT, in which correlation functions of
defect local operators are obtained by inserting local adjoint operators along the spacetime
contour [8, 10, 11, 13–16, 19, 23, 25, 30, 31, 33, 35, 36]. Explicitly, the correlation function
of n defect operators Oi(ti) ≡ Oi(x(ti)) inserted in order on the line (i.e., tm < tm′ if
m < m′) is defined by

〈O1(t1) . . . On(tn)〉 ≡
〈 1
N

Tr [Wn+1,nOn(tn)Wn,n−1 . . .W21O1(t1)W10]
〉
N=4 SYM

, (2.2)

Wji ≡ Pe
∫ tj
ti

(A0+Φ6)dt
, (2.3)

where t0 ≡ −∞, tn+1 ≡ ∞. These correlators have the normalization 〈1〉 = 〈W〉N=4 SYM =
1. One may also consider correlation functions involving insertions of local gauge invariant
operators away from the Wilson line, but in this paper we focus on correlators involving
only defect insertions.

The Wilson line defect correlators satisfy the axioms of a 1d CFT (see appendix A
of [54]). For instance, the two- and three-point functions of primary operators O1, O2 and
O3 take the form:

〈O1(t1)O2(t2)〉 = NO1O2

t2∆1
21

δ∆1∆2 , (2.4)

〈O1(t1)O2(t2)O3(t3)〉 = CO1O2O3

t∆1+∆2−∆3
21 t∆2+∆3−∆1

32 t∆3+∆1−∆2
31

, t1 < t2 < t3. (2.5)

Here, tij ≡ ti − tj is the signed Euclidean distance on the line and NO1O2 and CO1O2O3 are
the two-point and three-point (i.e., OPE) coefficients. The normalized OPE coefficients are
given by CO1O2O3/(NO1O

†
1
N
O2O

†
2
N
O3O

†
3
) 1

2 .3
In 1d CFTs, because operators on a line cannot be moved continuously around each

other without becoming coincident, three-point and higher-point functions generically
depend on the circle-ordering of the operators.4 Thus, the OPE coefficient in (2.5) is defined
with a particular order. By circular permutation, it satisfies CO1O2O3 = CO2O3O1 = CO3O1O2

and likewise NO1O2 = NO2O1 . Given that the Wilson line defect CFT is parity invariant and
unitary, there are also relations between configurations of correlators with different circle-
orderings. For instance, assuming the primaries are parity eigenstates, the OPE coefficients

3One can always rescale the primaries to have unit norm (i.e., NOO† = 1). We do not adopt this convention
because some (protected) operators have natural normalizations that contain information about the CFT.

4A discussion of operator ordering and discrete symmetries in a 1d defect CFT — the twist defect in the
3d Ising model — can be found in section 2 of [55].
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with different orderings will differ at most by a minus sign: CO1O2O3 = (−1)P1+P2+P3CO3O2O1 ,
where (−1)Pi is the parity of Oi. Furthermore, the time-reversal property of the adjoint
map, 〈O†n(tn) . . . O†1(t1)〉 = 〈O1(−t1) . . . On(−tn)〉∗, implies C∗O1O2O3

= C
O†3O

†
2O
†
1
.5 The

relations between different configurations of higher-point functions will in general be more
complicated.

There are two classes of “elementary operators” on the Wilson line dCFT that we
will work with. The first class consists of the chiral primaries of the form (ε · Φ)L where
Φ = (Φ1, . . . ,Φ5) are the scalars that do not couple to the Wilson line, L is a non-negative
integer, and ε ∈ C5 is a polarization vector satisfying ε2 = 0. This operator transforms in
the rank L symmetric traceless representation of SO(5) and its dimension is protected and
equal to its R-charge, ∆ = L. For the rank-1 symmetric traceless (i.e., the fundamental)
representation, we can also denote the operators by Φa, a = 1, . . . , 5. For concreteness, we
will often phrase our discussion in terms of the specific chiral primaries

Z ≡ Φ4 + iΦ5, Z̄ ≡ Φ4 − iΦ5. (2.6)

The second class of operators we will work with are the displacement operators, Da,
a = 1, 2, 3. Displacement operators exist in any dCFT due to the breaking of translational
symmetry [9]. They generate local orthogonal translations of the defect. On the Wilson
line, the displacement operators take the explicit form Da ≡ iF0a + DaΦ6, where F0a
is the gauge field strength and Da is the covariant derivative. They transform in the
fundamental representation of SO(3) and have protected dimension ∆ = 2. We can also use
the alternative notation µ · D, where µ ∈ C3 is a polarization vector satisfying µ2 = 0.

Previous results in the large charge sector of the Wilson line dCFT. In [41], we
studied correlators of chiral primaries in the dCFT in which two of the primaries have
“large” R-charge. More precisely, we chose the R-charges of the two distinguished primaries
to be J and took the following sequence of double-scaling limits,

1) N →∞ with g and J held fixed
2) J, g →∞ with J held fixed

(large charge limit), (2.7)

where g and J are defined by

g ≡
√
λ

4π , J ≡ J

g
. (2.8)

We call operators whose R-charges scale in proportion with the coupling g in the large
charge limit “heavy” and operators whose quantum numbers do not scale with g “light.”

In [41], we studied the leading large charge behavior of the two-point function 〈ZJ Z̄J〉
and higher-point functions 〈ZJ Z̄J ∏i Z

`i
∏
j Z̄

¯̀
j 〉 using AdS/CFT. The two-point function

was found to be

〈ZJ(tL)Z̄J(t̄L)〉 = NZJ Z̄J
(tL − t̄L)2J , NZJ Z̄J = (2gc)2Je8g(E(c2)−E(0)), (2.9)

5There are additional constraints on the OPE data from the reflection positivity of the adjoint, which says
〈O1(t1) . . . On(tn)O†n(−tn) . . . O†1(−t1)〉 ≥ 0. For example, for the two-point function, it implies NO†O ≥ 0.
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where the parameter c2 is related to J by:
J
4 = K(c2)− E(c2), (2.10)

and K(c2) and E(c2) are the complete elliptic integrals of the first and second kind. Mean-
while, the higher-point functions take the simplest form consistent with conformal symmetry:

〈ZJ(tL)Z̄J(t̄L)∏m
i=1 Z

`i(ti)
∏n
j=1 Z̄

¯̀
j (t̄j)〉

〈ZJ(tL)Z̄J(t̄L)〉
= (tL − t̄L)2`tot(2gc)2`tot∏m

i=1(ti − t̄L)2`i
∏n
j=1(t̄i − tL)2¯̀

i
δ`tot ¯̀tot

,

(2.11)

where `tot ≡
∑m
i=1 `i and ¯̀tot ≡

∑n
j=1

¯̀
j .

We also studied the large charge limit of the two-point function 〈Φ̃J Φ̃J〉 and higher-point
functions 〈Φ̃J Φ̃J ∏

i Φ̃`i〉, where Φ̃` ≡ (ε(t) · Φ(t))` is a “topological” chiral primary whose
polarization vector ε(t) is correlated with its position in such a way that its correlation
functions are independent of position.6 These observables are related to the ones in (2.9)
and (2.11) because, at leading order in large charge, the topological primary truncates
to a sum of powers of Z and Z̄ only — namely, Φ̃` ∼ (εZ(t)Z(t) + εZ̄(t)Z̄(t))` for an
appropriate choice of εZ , εZ̄ . Correlators of the topological operators can be studied using
localization [14, 15] and, accordingly, in [41] we expressed the topological correlators in
terms of an “emergent” J × J matrix model that we could analyze in the large charge limit
using the usual saddle point techniques. The result for 〈Φ̃J Φ̃J〉 agreed with (2.9), and the
topological higher-point functions reproduced the appropriate linear combinations of the
correlators in (2.11).

Finally, also using localization, we were able to relate certain topological correlators
to the generalized Bremsstrahlung function, BJ , whose leading and subleading behavior
in the large charge limit was determined in [50, 56]. As a special case, this allowed us to
determine the following large charge OPE coefficient to subleading order:

C2
Z`ZJ Z̄J+`

NZ`Z̄`NZJ Z̄JNZJ+`Z̄J+`
= (gπc2)`

`!

(
1 + `(`+ 1)

4g

[
3

4π + 1− c2

c2E(c2)

]
+O(1/g2)

)
. (2.12)

These OPE coefficients satisfy CZZJ Z̄J+` = CZJZZ̄J+` = CZ̄Z̄JZJ+` and are real, as required
by parity, R-symmetry and time-reversal.

Four-point correlators in the large charge sector. In this work, we continue to
study defect correlators in which two chiral primaries have large R-charge, now extending
the analysis to subleading order in the large charge expansion. We will use AdS/CFT to
compute the following four-point functions:
〈ε1 · Φ(t1) ε2 · Φ(t2)(ε3 · Φ(t3))J(ε4 · Φ(t4))J〉

〈(ε3 · Φ(t3))J(ε4 · Φ(t4))J〉 = 2g
π

ε1 · ε2
t212

[G1(χ) + ζG2(χ) + ξG3(χ)] ,

(2.13)
〈µ1 · D(t1) µ2 · D(t2)(ε3 · Φ(t3))J(ε4 · Φ(t4))J〉

〈(ε3 · Φ(t3))J(ε4 · Φ(t4))J〉 = 12g
π

µ1 · µ2
t412

G4(χ). (2.14)

6In one possible realization of the topological primaries on the Wilson line, the polarization vector is
ε(t) = (0, 0, 1− t2, 2t, i(1 + t2)). It satisfies ε(ti) · ε(tj) ≡ −2t2ij .
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Here, χ is the conformally invariant cross-ratio given by

χ ≡ t12t34
t13t24

,
1

1− χ = t13t24
t14t23

,
1− χ
χ

= t14t23
t12t34

, (2.15)

and ξ and ζ are the SO(5) invariant cross-ratios of the polarization vectors given by

ξ ≡ ε1 · ε3 ε2 · ε4
ε1 · ε2 ε3 · ε4

, ζ ≡ ε1 · ε4 ε2 · ε3
ε1 · ε2 ε3 · ε4

. (2.16)

The dependence of the conformally invariant functions, Gi(χ), on N , g and J is left implicit
in our notation. In the large charge expansion (after taking the planar limit), each Gi(χ) is
written as a series in 1/g with a general functional dependence on J at each order. Note
that, since J = J/g, this large charge scaling limit effectively resums an infinite number of
terms in the ordinary perturbation theory in powers of 1/g with J finite.

The general form of (2.13) and (2.14) is fixed by the SL(2,R), SO(5) and SO(3)
symmetries. The normalizations are chosen based on the observation that when either
J → 0 or χ→ 0, then the normalized four-point functions reproduce the two-point functions
of the unit chiral and displacement operators. In particular, χ → 0 corresponds to the
OPE limit t1 → t2 or t3 → t4, which is dominated by the exchange of the identity operator
between the two light and the two heavy operators. The two-point functions are known [57]:

〈ε1 · Φ(t1)ε2 · Φ(t2)〉 = n1(g)ε1 · ε2
t212

, 〈µ1 · D(t1)µ2 · D(t2)〉 = 6n1(g)µ1 · µ2
t412

. (2.17)

The relative normalization of these correlators is fixed by supersymmetry (because Φi and
Da are in the same supermultiplet of OSp(4∗|4)) and the coefficient, n1(g), is known exactly
from localization [14, 57]. In the planar limit, one finds n1(g) = 2g

π
I2(4πg)
I1(4πg) . For our purposes,

we will only need the first two terms in the planar strong coupling limit (N →∞, g � 1):

n1(g) = 2g
π

(
1− 3

8πg + . . .

)
. (2.18)

Matching (2.17) with (2.13)–(2.14), it follows that G1, G4 → 1 − 3
8πg + O(1/g2) and

G2, G3 → 0, as either χ→ 0 (for any J), or J → 0.
It will often be convenient to let ZJ and Z̄J serve as the charge J operators in (2.13)

and (2.14), where Z and Z̄ were defined in (2.6). Thus, instead of the general correlators
in (2.13)–(2.14), we will typically work with the four correlators

〈Φi(t1)Φj(t2)ZJ(t3)Z̄J(t4)〉
〈ZJ(t3)Z̄J(t4)〉

= 2g
π

1
t212
G1(χ)δij , (2.19)

〈Z(t1)Z̄(t2)ZJ(t3)Z̄J(t4)〉
〈ZJ(t3)Z̄J(t4)〉

= 4g
π

1
t212
GZZ̄(χ), (2.20)

〈Z̄(t1)Z(t2)ZJ(t3)Z̄J(t4)〉
〈ZJ(t3)Z̄J(t4)〉

= 4g
π

1
t212
GZ̄Z(χ), (2.21)

〈Da(t1)Db(t2)ZJ(t3)Z̄J(t4)〉
〈ZJ(t3)Z̄J(t4)〉

= 12g
π

1
t412
G4(χ)δab, (2.22)
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(a) Operators on the line. . . (b) . . . and circle

Figure 2. The four operators on the Wilson line can be in one of three distinct configurations.
(a) Using the conformal transformations and parity, we can put ZJ(t3), Z̄J(t4) and the first light
operator O(t1) at any three points on the line satisfying t3 < t1 < t4. The three configurations of the
four-point function are then distinguished by the location of the second light operator: t3 < t2 < t1,
t1 < t2 < t4, and t2 < t3 or t4 < t2. In terms of the cross-ratio, these correspond to 0 < χ < 1,
χ < 0, and χ > 1. (b) The different configurations can also be visualized by compactifying the line
to a circle.

where we define

GZZ̄(χ) ≡ G1(χ) +G2(χ), GZ̄Z(χ) ≡ G1(χ) +G3(χ). (2.23)

The leading order behavior of (2.20)–(2.21) is included in (2.11). In the present work, we
will determine the first subleading correction of (2.20)–(2.21) and the leading behavior
of (2.19) and (2.22).

We make a few additional comments about (2.19)–(2.22): the scalars Φi, i = 1, 2, 3,
which are orthogonal to Z, Z̄ and Φ6, possess a residual SO(3) ⊂ SO(6) R-symmetry.
Furthermore, the four operators of interest are all parity even and under the adjoint map
satisfy Φ†i = Φi, D†a = Da and (ZL)† = Z̄L. Finally, it should be emphasized that there
are three inequivalent configurations the four operators on the line can be in, χ ∈ (−∞, 0),
χ ∈ (0, 1), and χ ∈ (1,∞), as illustrated in figure 2. Via analytic continuation from
these configurations, each four-point function defines three generically distinct multi-valued
complex functions with singularities at χ = 0, 1,∞.

Superconformal Ward identities. Before we commence the analysis of the defect
correlators, we note that they are not independent. Specifically, the functions Gi(χ) are
related by crossing symmetry and supersymmetry. Firstly, interchanging 1↔ 2 in (2.15)
sends χ↔ χ/(χ− 1) and it therefore follows from (2.19)–(2.22) that

G1(χ) = G1

(
χ

χ− 1

)
, GZ̄Z(χ) = GZZ̄

(
χ

χ− 1

)
, G4(χ) = G4

(
χ

χ− 1

)
. (2.24)

Thus, one can study the Gi(χ) on the restricted interval χ ∈ (0, 2) and extend them to
χ ∈ R using (2.24), or study Gi(χ) on χ ∈ R and use (2.24) as a consistency check.

Less trivially, the correlator in (2.13) satisfies superconformal Ward identities, which
may succinctly be written [10]:

0 =
(
∂A
∂ζ1

+ 1
2
∂A
∂χ

)∣∣∣∣
ζ1=χ

=
(
∂A
∂ζ2

+ 1
2
∂A
∂χ

)∣∣∣∣
ζ2=χ

. (2.25)
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Here, A ≡ G1(χ) + 1
ζ1ζ2

G3(χ) + (1−ζ1)(1−ζ2)
ζ1ζ2

G2(χ) is the conformally invariant part of the
r.h.s. of (2.13) and ζ1 and ζ2 are an alternative parametrization of the SO(5) invariants
related to ξ and ζ by ξ ≡ 1

ζ1ζ2
and ζ ≡ (1−ζ1)(1−ζ2)

ζ1ζ2
. Evaluating (2.25) explicitly, we get the

following two ODEs,(
χ
d

dχ
− 2

)
G3(χ) =

(
χ(χ− 1) d

dχ
+ 2

)
G2(χ) = −χ2dG1

dχ
. (2.26)

These equations allow us to solve for G2(χ) and G3(χ), and therefore for GZZ̄ and GZ̄Z , in
terms of G1(χ), after using input from the OPE limit and the localization result (2.12) to
fix the initial conditions. The details of this calculation are given in section 4.2.2.

Since the unit scalar Φi and displacement operator Da are in the same superconformal
multiplet, the correlators in (2.13) and (2.14) are also related by Ward identities [10]. In
principle, one can also determine G4 in terms of G1, just like GZZ̄ and GZ̄Z . We will instead
study the scalar and displacement correlators independently. This will serve as a test of the
consistency of our analysis via the dual string.

2.2 Summary of explicit results for the four-point functions

We close this preliminary section by collecting our final results for the four-point functions.
They are accessible without a detailed understanding of the derivations in sections 3 and 4.

The conformally invariant functions Gi(χ) are naturally expressed as series over the
“fluctuation energies” En. These are determined by the quantization condition∫ En

1
dEρ(E) = |n|, (2.27)

where the “energy density”, ρ(E), is

ρ(E) ≡ 2
π

K(c2)E2 − E(c2)√
E2 − 1

√
E2 + c2 − 1

. (2.28)

Note that the integral in (2.27) converges at E = 1 for both the edge case c = 0, for which
ρ(E) = 1, and the general case c ∈ (0, 1), for which ρ(E) ∼ 1/

√
E − 1 as E → 1+. It is also

convenient to define the “form factor”, f(E):

f(E) ≡ π

4
E(E2 + c2 − 1)
K(c2)E2 − E(c2) . (2.29)

From the semiclassical analysis of the fluctuations of the dual string in sections 3–4, we
will find that G1(χ) and G4(χ) are given by

G1(χ) = χ2

|1− χ|
∑
n∈Z

sgn(1− χ)nf(En)e−En| log |1−χ||, (2.30)

G4(χ) = χ4

(1− χ)2

∑
n∈Z

sgn(1− χ)n+1f(En)E
2
n − 1
6 e−En| log |1−χ||. (2.31)

Furthermore, GZZ̄(χ) and GZ̄Z(χ) are obtained from G1(χ) and the Ward identities; the
explicit results are given in (4.54)–(4.57).
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As discussed in detail in section 5, these series representations are directly related to
the conformal block expansion in the heavy-light channel, and the energies En and form
factors f(En) encode the anomalous dimensions and OPE coefficients of the exchanged
operators. The expressions (2.30)–(2.31) are valid for all χ ∈ R, except at χ = 2, where
the Gi(χ) are smooth but their series representations do not converge (as explained in
section 4.2.1, this is related to the radius of convergence of the OPE). It is interesting to
note that consistency with the limiting behavior G1(χ), G4(χ)→ 1 as χ→ 0, as required
by the fact that in this limit the OPE of the two light or two heavy operators is dominated
by the exchange of the identity, implies that we should have∑

n∈Z
f(En)e−En| log(1−χ)| χ→0∼ 1

χ2 ,

∑
n∈Z

f(En)E
2
n − 1
6 e−En| log(1−χ)| χ→0∼ 1

χ4 .

(2.32)

We will explicitly check towards the end of section 4.2.1 that these indeed hold, based on
the large n behavior of the energies En and form factors f(En). This is a non-trivial test of
the crossing symmetry of our results.

The four-point functions and the OPE data can also be studied analytically at both
small J (c2 → 0+) and large J (c2 → 1−), as discussed in section 5.2. The expansion of
the four-point functions in small c2 involves polylogarithms.7 Meanwhile, in the c2 → 1
(J → ∞) limit, the behavior of the four-point functions depends significantly on whether
they are in the “heavy-heavy-light-light” (χ < 1) or the “heavy-light-heavy-light” (χ > 1)
configurations: the correlators in the latter configuration vanish while the correlators in
the former configuration attain finite limits given by Bessel functions. See figures 12, 13
and 14 for plots of G1(χ), GZZ̄(χ) and G4(χ) as functions of χ for representative values of
c2, including the edge cases c2 = 0 and c2 = 1.

3 Semiclassical analysis of the dual string

We will compute the next-to-leading order terms in the large charge expansion of the four
point functions in (2.19)–(2.22) by studying the semiclassical fluctuations of the string that
is holographically dual to the Wilson line with ZJ and Z̄J inserted. We first sketch the
basic idea in section 3.1, and then fill in the details in sections 3.2–3.3 and section 4.

3.1 Preview

Invoking AdS/CFT, we can schematically write the defect four-point function of two heavy
operators ZJ , Z̄J and two light operators, O (≡ Z, Z̄, Φi, or Da) and O†, as a string path
integral:

〈O(t1)O†(t2)ZJ(t3)Z̄J(t4)〉 =
∫
DΨe−S[Ψ]vJZ(t3)vJ

Z̄
(t4)vO(t1)vO†(t2)∫

DΨe−S[Ψ] . (3.1)

7The expansion in powers of c2 is equivalent to an expansion in powers of J
g
, and is therefore related

to the standard 1/g perturbation theory in the string sigma model. The appearance of polylogarithms is
expected for loop diagrams in AdS2, see e.g. [58].
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Here,
∫
DΨ denotes integration over the fields of the superstring sigma model (which we

denote collectively by Ψ) whose bosonic components are the coordinates of the string in
AdS5 × S5, S[Ψ] is the string action, and vZ , vZ̄ , vO and vO† are vertex operators dual to
Z, Z̄, O and O†. In accordance with the “extrapolate dictionary”, we define the vertex
operator vO corresponding to the Wilson line defect operator O by evaluating the dual field
ΨO at the point on the boundary of the worldsheet where O is located. Schematically,

vO(t) ≡ lim
z→0+

2g
z∆ ΨO(t, z), (3.2)

where z is a particular bulk coordinate that together with t parametrizes the string worldsheet
(with boundary at z = 0), and ∆ is the dimension of O in the dCFT.

Taking the planar limit in (3.1) picks out the disk topology and taking the large g limit
means the path integral is dominated by its saddle point. Without the two large charge
insertions, the saddle point would be a classical string extending in an AdS2 subspace of
AdS5 and sitting at a point on S5. With the two large charge insertions ZJ and Z̄J , the
saddle point solution is a classical string, Ψcl, that carries angular momentum J along
the circle in S5 dual to Z. This solution extremizes the “total” action, which includes the
contribution of the vertex operators:

Stot[Ψ] ≡ S[Ψ]− J log (vZ(t3)vZ̄(t4)) . (3.3)

The string tension is 2g, so the two terms are the same order in the large charge limit.
We reviewed the classical string dual to the Wilson loop with ZJ and Z̄J in [41], which

was discussed previously in [8, 49, 50]. We computed the action and the vertex operators
dual to Z and Z̄ on the classical solution, which determined the leading large charge behavior
of the two-point and higher-point functions in (2.9) and (2.11). In this work, we go beyond
the leading order and therefore need to take into account the fluctuations about the classical
string. Letting Ψ = Ψcl + δΨ, we expand Stot to quadratic order in the fluctuation modes:

Stot[Ψcl + δΨ] = Stot[Ψcl] + 1
2
δ2Stot
δΨδΨ

∣∣∣∣
Ψcl

δΨδΨ︸ ︷︷ ︸
≡S2[δΨ]

+O(δΨ3). (3.4)

We will see in section 3.2 that there are four distinct bosonic fluctuation modes, correspond-
ing to the four types of defect operators on the Wilson line appearing in (2.19)–(2.22). We
will not study the fermionic modes.

From (3.1), it follows that the four-point function normalized by the large charge
two-point function is given by

〈O(t1)O†(t2)ZJ(t3)Z̄J(t4)〉
〈ZJ(t3)Z̄J(t4)〉

= vO(t1)vO†(t2)
∣∣
Ψcl︸ ︷︷ ︸

classical

+WOO†(t1, t2)︸ ︷︷ ︸
fluctuation

+O(g0), (3.5)

where we define the boundary-to-boundary propagator8

WOO†(t1, t2) ≡ (2∆− 1)2 lim
z1→0+

z2→0+

2g
z∆

1

2g
z∆

2
GOO†(t1, z1; t2, z2) (3.6)

8The factor of (2∆− d)2 that arises when relating the boundary-to-boundary propagator to the boundary
limit of the bulk-to-bulk propagator was discussed in, for instance, [59]. In our case, d = 1.
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in terms of the bulk-to-bulk propagator

GOO†(t1, z1; t2, z2) ≡
∫
DδΨexp (−S2[δΨ]) δΨO(t1, z1)δΨO†(t2, z2)∫

DδΨexp (−S2[δΨ]) . (3.7)

Because S2 is proportional to the string tension, the bulk-to-bulk propagator is proportional
to its inverse, and the fluctuation piece in (3.5) is suppressed relative to the classical piece by
1/g. Thus, to determine the subleading correction to the large charge four-point functions
using AdS/CFT, we need to determine the quadratic action of the fluctuations, compute
the bulk-to-bulk propagators, and then send the two bulk points to the boundary.

We will compute the boundary-to-boundary propagators by first solving the Green’s
equations satisfied by the bulk-to-bulk propagators. This is the most technical step of the
analysis and is the focus of section 4. The classical string is not homogeneous, unlike the
AdS2 string dual to the Wilson line without insertions. Nonetheless, since the classical
string is symmetric under translations parallel to the boundary in global coordinates, we
can take the Fourier transform with respect to the boundary global coordinate, in which
case the Green’s equations reduce to ODEs in the bulk global coordinate. The ODEs turn
out to be of the Jacobi form of the Lamé equation, the solutions of which are known and
given in terms of the theta functions. This lets us write explicit integral representations
of the propagators. Moreover, we may write the boundary-to-boundary propagators as
sums over the residues at the poles, which take particularly simple forms when written
in terms of the fluctuation energies of the fluctuations. The series representations of the
boundary-to-boundary propagators can be interpreted either as sums over stationary waves
on the classical string, which lets us make contact with integrability in section 6, or as sums
over primaries in the conformal block expansions of the four-point defect correlators, which
lets us extract dCFT OPE data in section 5.

One could also study the subleading behavior of the two-point function that we normalize
by in (3.5), by evaluating a functional determinant that takes the schematic form

〈ZJ(t3)Z̄J(t4)〉 ∝ e−Stot[Ψcl]︸ ︷︷ ︸
classical

(
Detδ

2Stot
δΨδΨ

∣∣∣
Ψcl

)− 1
2

︸ ︷︷ ︸
fluctuation

(1 +O(1/g)) . (3.8)

The classical contribution was computed in [41] and is given in eq. (2.9). The calculation of
the fluctuation determinant is a non-trivial problem whose solution we will not pursue in
this work.9

The above sketch of the semiclassical analysis suppresses many details, including the
standard steps of picking a suitable gauge and coordinates, redefining fields, simplifying
the quadratic action, and keeping track of how these choices affect the dictionary given
schematically in (3.5)–(3.7). In the remainder of this section, we will derive the quadratic
action of the bosonic fluctuation modes in detail, identify the Green’s equations satisfied
by the bulk-to-bulk propagators, and formulate the precise dictionary between the defect
correlators and the boundary-to-boundary propagators.

9In addition to needing to compute the functional determinants of the bosonic fluctuation operators,
which would be complicated by two of the modes being coupled in the coordinates we use in section 3.2, we
would also need to include the contributions of the fermionic fluctuations.
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3.2 Quadratic action for the fluctuations

We begin by choosing coordinates for AdS5×S5. We will use Euclidean signature throughout.
First, we introduce the embedding coordinates XA, A = 1, . . . , 6 for AdS5 and Y I , I =
1, . . . , 6 for S5. These satisfy ηABX

AXB = −1 and δIJY
IY J = 1, where ηAB is the

Minkowski metric tensor on R5,1 (with mostly plus convention), and δIJ is the standard
Kronecker symbol on R6. The metric on AdS5 × S5 may then be written:

ds2 = ds2
AdS5 + ds2

S5 ,

ds2
AdS5 = ηABdX

AdXB , ds2
S5 = δIJdY

IdY J .
(3.9)

Next, we parametrize the embedding coordinates in a way that is adapted to studying the
fluctuations of the dual string. It will be convenient to foliate AdS5 by AdS2 × S2 slices:

Xa = xa

1− 1
4x

2 , (X4, X5, X6) =
1 + 1

4x
2

1− 1
4x

2 (sinh ρ, cosh ρ sinh τ, cosh ρ cosh τ) . (3.10)

Here ρ, τ ∈ R are the bulk and Euclidean time coordinates on the AdS2 slices and xa ∈ R,
a = 1, 2, 3, are three orthogonal coordinates with norm x ≡

√
xaxa. If we decompose xa into

radial and angular coordinates, then the two angular coordinates are coordinates on the S2

slices and the radial coordinate x parametrizes the different S2 ×AdS2 slices. Similarly, it
will be convenient to foliate S5 by S3 × S1 slices:

Y i = cos θ̄ȳi

1 + 1
4 ȳ

2 , Y 6 =
cos θ̄(1− 1

4 ȳ
2)

1 + 1
4 ȳ

2 , Y 4 + iY 5 = sin θ̄eiφ̄. (3.11)

Here φ̄ ∈ [0, 2π) is the azimuthal angle on the S1 slices corresponding to rotations in the
Y 4 − Y 5 plane, ȳi ∈ R, i = 1, 2, 3, are stereographic coordinates on the S3 slices with norm
ȳ ≡

√
ȳiȳi, and θ̄ ∈ [0, π) parametrizes the different S3×S1 slices. We have written the coor-

dinates on S5 with bars to distinguish them from redefined coordinates that will appear later.
In terms of the xa, ρ, τ and ȳi, θ̄, φ̄ coordinates, the metrics on Euclidean AdS5 and S5 are

ds2
AdS5 =

(
1 + 1

4x
2
)2

(
1− 1

4x
2
)2

(
dρ2 + cosh2 ρdτ2

)
+ dxadxa(

1− 1
4x

2
)2 , (3.12)

ds2
S5 = dθ̄2 + sin2 θ̄dφ̄2 + cos2 θ̄

dȳjdȳj(
1 + 1

4 ȳ
2
)2 . (3.13)

Now we turn to the string in AdS5 × S5 that is dual to the Wilson line with ZJ and
Z̄J inserted. We take the spacetime contour of the Wilson line to be a pair of antiparallel,
antipodal lines located at the boundary of AdS5 at ρ → ±∞ (one may later perform a
conformal transformation to the infinite straight line or circular loop). The contour at xa = 0
and ρ→ +∞ runs in the positive τ direction, the contour at xa = 0 and ρ→ −∞ runs in
the negative τ direction, and ZJ and Z̄J are located at τ = −∞ and τ =∞, respectively.
This configuration in global coordinates has manifest translational symmetry along τ . The
classical string dual to this operator was discussed in [8, 49, 50] and reviewed in [41]. To
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summarize, the string forms a strip in AdS5 that stretches between the two antipodal lines
at ρ→ ±∞ and partly wraps an S2 in S5, carrying angular momentum J . Since the S5

embedding coordinates YI are dual to the scalars ΦI , and since the Wilson line couples to Φ6
and Z and Z̄ are chiral combinations of Φ4 and Φ5, the S2 wrapped by the string is given by
(Y 4)2 +(Y 5)2 +(Y 6)2 = 1. With ȳi = 0 in (3.11), θ̄ and φ̄ are its polar and azimuthal angles.

With ρ and τ serving as the worldsheet coordinates, the classical dual string is given by:10

xa = 0, ȳi = 0, sin θ̄ = sin θcl(ρ) ≡ c

cosh ρ, φ̄ = φcl(τ) ≡ φ0 − iτ. (3.14)

Here, the parameter c ∈ [0, 1), which we introduced for convenience in (2.9), determines the
maximum polar angle of the string as well as the angular momentum of the string in the
Y 4 − Y 5 plane. Fixing the angular momentum to be J yields the condition (2.10). Finally,
the parameter φ0 in (3.14) is a modulus of the classical solution. This modulus played an
important role in [41], but a limited one in the present analysis. When mapping the string
observables to the dCFT observables, one should integrate over the modulus to ensure that
the string observables are dual to CFT observables in an R-charge eigenstate rather than a
coherent state. The integration ensures that correlators not having equal numbers of Z and
Z̄ are zero, and also gives rise to non-trivial combinatorial factors when the chiral primaries
are non-zero linear combinations of both Z and Z̄. However, in the computation of the
correlators in (2.19)–(2.22), the integration over φ0 is trivial and we will ignore it.

We are interested in the bosonic fluctuations about the classical solution in (3.14). We
will work with the Nambu-Goto action and choose the static gauge such that ρ and τ are
not dynamical and serve as the worldsheet coordinates. For notational convenience, we
package them into σµ ≡ (ρ, τ), and let ∂µ ≡ ∂/∂σµ. We denote the AdS2 metric by hµν
and the metric induced on the classical string by γµν , which are explicitly

hµν ≡ diag
(
1, cosh2 ρ

)
, (3.15)

γµν ≡ hµν + ∂µθcl∂νθcl + sin2 θcl∂µφcl∂νφcl = cosh4 ρ− c2

cosh2 ρ
diag

( 1
cosh2 ρ− c2 , 1

)
. (3.16)

We also note the inverse metric and the tensor density (here γ ≡ detγµν):

γµν = cosh2 ρ

cosh4 ρ− c2diag
(
cosh2 ρ− c2, 1

)
,

√
γ = cosh4 ρ− c2

cosh2 ρ
√

cosh2 ρ− c2
. (3.17)

The quadratic action of the bosonic fluctuation modes can be found by expanding the
Nambu-Goto action

S = 2g
∫
d2σ
√

Γ, (3.18)

around the classical solution. Here 2g =
√
λ

2π is the string tension, and the induced metric
on the fluctuating string is:

Γµν ≡

(
1 + 1

4x
2
)2

(
1− 1

4x
2
)2hµν + ∂µx

a∂νx
a(

1− 1
4x

2
)2 + ∂µθ̄∂ν θ̄ + sin2 θ̄∂µφ̄∂ν φ̄+ cos2 θ̄(

1 + 1
4y

2
)2∂µȳ

i∂ν ȳ
i.

(3.19)
10Recall that we have already performed a Wick rotation to Euclidean AdS. The solution in Lorentzian

signature is the same but with φcl = φ0 + τL, where τL is the Lorentzian time coordinate of global AdS.
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The xa coordinates within AdS5 are already suitable for the small fluctuation expansion.
For the coordinates in S5, it is convenient to define the fluctuation fields yi, θ and φ as

ȳi = 1
fy(ρ)y

i, θ̄ = θcl + 1
fθ(ρ)θ, φ̄ = φcl + 1

fφ(ρ)φ , (3.20)

where

fy(ρ)≡

√
cosh2 ρ−c2

coshρ , fθ(ρ)≡
coshρ

√
cosh2 ρ−c2√

cosh4 ρ−c2
, fφ(ρ)≡ ccoshρ√

cosh4 ρ−c2
. (3.21)

The rescaling by the ρ dependent factors is necessary in order to obtain canonical kinetic
terms for the fluctuations. Plugging (3.20) into (3.18) and expanding to quadratic order in
xa, yj , θ, φ, the final result for the quadratic action takes the form (see appendix B for the
detailed derivation):

S2[xa, yi, θ, φ] ≡ 2g
∫
d2σ
√
γ
[
Lxx + Lyy + Lθφ

]
, (3.22)

where

Lxx = 1
2γ

µν∂µx
a∂νx

a + 1
2m

2
x(ρ)xaxa, (3.23)

Lyy = 1
2γ

µν∂µy
i∂νy

i + 1
2m

2
y(ρ)yiyi, (3.24)

and the “masses” are given by

m2
x(ρ) ≡ cosh2 ρ(2 cosh2 ρ− c2)

cosh4 ρ− c2 , m2
y(ρ) ≡ −

c2
(
cosh2 ρ− 2

)
cosh4 ρ− c2 . (3.25)

Note that m2
x(ρ)→ 2 and m2

y(ρ)→ 0 as c→ 0 or ρ→ ±∞, which are the expected values
of the masses for the fluctuations around the undeformed AdS2 string. The Lagrangian Lθφ
for the coupled θ, φ modes is slightly more complicated and takes the form

Lθφ = 1
2γ

µν (∂µθ∂νθ + ∂µφ∂νφ) +
m2
θφ

2
(
θ2 + φ2

)
− is(θ∂τφ− φ∂τθ), (3.26)

where the prefactor for the cross-term is

s ≡ cosh2 ρ(− cosh4 ρ+ c2 cosh 2ρ)
(cosh4 ρ− c2)2 , (3.27)

and the mass is

m2
θφ ≡ −

1
(cosh4 ρ− c2)3

[
cosh10 ρ+ c2 cosh6 ρ(10− 12 cosh2 ρ+ cosh4 ρ) (3.28)

+ c4 cosh2 ρ(1− 12 cosh2 ρ+ 10 cosh4 ρ) + c6 cosh2 ρ

]
.

Note that θ and φ are coupled by the θ
↔
∂τφ ≡ θ∂τφ− φ∂τθ term and there does not appear

to be a simple coordinate transformation to decouple them. Note also that, from the dCFT
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(a) AdS5 (b) S5

Figure 3. A qualitative sketch of the four types of bosonic fluctuations of the semiclassical string
dual to the Wilson line with ZJ and Z̄J . In the static gauge, there are (a) 3 fluctuation modes,
labelled xa, orthogonal to the AdS2 strip formed by the classical string in AdS5, and (b) 1 + 1 + 3
fluctuation modes, labelled φ, θ and yi, in the azimuthal, polar and orthogonal directions of the S2

partially wrapped by the classical string in S5.

perspective, the SO(5) R-symmetry of the Wilson line that is broken to SO(3) by the
insertion of ZJ and Z̄J should be restored when J = c2 = 0. In terms of the dual string,
this implies that there should be a choice of coordinates in which the five S5 fluctuation
modes appear the same when c2 = 0. The restoration of the broken SO(5) symmetry is not
manifest in terms of the yi, θ and φ fluctuation fields, because when c2 → 0, then m2

y → 0
but m2

θφ → −1/ cosh2 ρ and s → −1/ cosh2 ρ. The symmetry can be made manifest, at
least at quadratic order, by rotating the combination (θ, φ) by iτ . This is done explicitly in
appendix C, where it is a useful first step in the perturbative analysis of the θ and φ modes.

To summarize, (3.22) is our final result for the quadratic action of fluctuations in the
static gauge. The eight transverse bosonic modes xa, yi, θ and φ, which are schematically
depicted in figure 3, can be viewed as fields propagating on an asymptotically AdS2
background, where the deformation from AdS2 corresponds to turning on the non-zero
angular momentum. Note that there is a manifest SO(3)× SO(3)R symmetry rotating the
x and y coordinates, and the x, y and θ/φ coordinates are decoupled to this order.

Let us finally remark that the expansion to quadratic order around a generic classical
string solution in AdS5 × S5 was discussed using a rather general formalism in [60] (see
also [61]), working with the Polyakov action. We have checked that the results given in [60]
precisely agree with (3.23), (3.24) and (3.26)–(3.28).11

11Our quadratic action in static gauge should be compared with the action for the transverse fluctuations
given in eq. (3.35) of [60].
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Bulk-to-bulk propagators. The bulk-to-bulk propagators for the fluctuation modes,
Gyy, Gxx, Gθθ = Gφφ and Gφθ = −Gθφ, satisfy Green’s equations that follow from the
quadratic action. For the x and y modes, they are12

[
1
√
γ
∂µ (√γγµν∂ν)−m2

x(ρ)
]
Gxx(ρ, τ ; ρ′, τ ′) = − 1

2g√γ δ(ρ− ρ
′)δ(τ − τ ′), (3.29)[

1
√
γ
∂µ (√γγµν∂ν)−m2

y(ρ)
]
Gyy(ρ, τ ; ρ′, τ ′) = − 1

2g√γ δ(ρ− ρ
′)δ(τ − τ ′). (3.30)

Meanwhile, since the θ and φ modes are coupled in the Lagrangian in (3.26), the corre-
sponding bulk-to-bulk propagators satisfy coupled Green’s equations:13

[
1
√
γ
∂µ (√γγµν∂ν)−m2

θφ(ρ)
]
Gθθ + 2is(ρ)∂τGφθ = − 1

2g√γ δ(ρ− ρ
′)δ(τ − τ ′), (3.31)[

1
√
γ
∂µ (√γγµν∂ν)−m2

θφ(ρ)
]
Gφθ − 2is(ρ)∂τGθθ = 0. (3.32)

These equations are accompanied by the boundary condition that each propagator vanishes
at both boundaries of the strip: G(ρ, τ ; ρ′, τ ′) → 0 as ρ → ±∞. The normalization of
the delta function on the r.h.s. of (3.29)–(3.31) makes it explicit that the bulk-to-bulk
propagators scale with the inverse of the string tension.

The propagators have a number of useful symmetries that follow either from the
quadratic action or the Green’s equations. First, Gxx, Gyy and Gθθ are all real, even
under interchange of the bulk points (e.g., Gxx(ρ, τ ; ρ′, τ ′) = Gxx(ρ′, τ ′; ρ, τ)), even under
parity (e.g., Gxx(ρ, τ ; ρ′, τ ′) = Gxx(−ρ, τ ;−ρ′, τ ′) = Gxx(ρ,−τ ; ρ′,−τ ′)), and invariant
under translations along τ (e.g., Gxx(ρ, τ ; ρ′, τ ′) = Gxx(ρ, τ + a; ρ′, τ ′ + a) for any a ∈
R). By contrast, while Gφθ is also invariant under translations along τ and even under
ρ, ρ′ → −ρ,−ρ′, it is imaginary, odd under interchange of the bulk points, and odd under
τ, τ ′ → −τ,−τ ′. The difference in behavior of Gφθ can be traced to the is∂τ terms in (3.31)
and (3.32).

From global to Poincaré coordinates. So far we have studied the fluctuations of the
dual string using coordinates on AdS5×S5 in which the AdS2 slices are parametrized by the
global coordinates, ρ, τ . In these coordinates, the translational symmetry of the classical
string is manifest. However, Poincaré coordinates are perhaps a more familiar choice
for stating the AdS/CFT dictionary between the defect four-point correlators in (2.19)–
(2.22) and the bulk-to-bulk propagators and classical vertex operators. Thus, we will also
parametrize the AdS2 slices using Poincaré coordinates t, z that are related to the global

12The Green’s equation for the yi modes follows from evaluating the functional derivative in 0 =∫
Dy δ

δyi(ρ,τ)

(
exp
(
−2g

∫
d2σ
√
γLyy

)
yj(ρ′, τ ′)

)
. Likewise for the xa modes.

13These follow, respectively, from evaluating 0 =
∫
DθDφ δ

δθ(ρ,τ)

(
exp
(
−2g

∫
d2σ
√
γLθφ

)
θ(ρ′, τ ′)

)
and

0 =
∫
DθDφ δ

δφ(ρ,τ)

(
exp
(
−2g

∫
d2σ
√
γLθφ

)
θ(ρ′, τ ′)

)
.

– 18 –



J
H
E
P
0
8
(
2
0
2
2
)
0
1
1

coordinates by14

t+ iz ≡ eτ (tanh ρ± i sech ρ)t4 + t3
eτ (tanh ρ± i sech ρ) + 1 . (3.33)

We take the upper sign if t3 < t4 and the lower sign if t3 > t4 so that z ≥ 0. Going forward
we assume t3 < t4. The transformation indeed satisfies dρ2 + cosh2 ρdτ2 = 1

z2 (dt2 + dz2).
Two properties of (3.33) are worth noting: firstly, ZJ and Z̄J are located at t3 and t4,

respectively, on the AdS2 boundary in accordance with (2.19)–(2.22). This follows from
sending τ → −∞ and τ → ∞ in (3.33). Secondly, to send the bulk point ρ, τ to the
boundary point t, we

fix τ = log
∣∣∣∣ t− t3t4 − t

∣∣∣∣ , and send ρ→ η∞ (3.34)

where η = 1 if t3 < t < t4 and η = −1 otherwise. In this limit, z is asymptotically

z ∼ 2|t4 − t||t3 − t|
t4 − t3

e−ηρ. (3.35)

3.3 Four-point functions as boundary-to-boundary propagators

We are now ready to state the precise dictionary between the defect correlators on the
Wilson line and the propagators on the classical string.

First, we identify the fluctuation modes dual to the elementary insertions introduced in
section 2. The six scalars, ΦI , in N = 4 SYM are dual to the S5 embedding coordinates, YI .
In particular, in the dCFT the Φi, i = 1, 2, 3, appearing in (2.19) are dual to Yi, while Z and
Z̄ are dual to Y4 + iY5 = sin θ̄eiφ̄ and Y4 − iY5 = sin θ̄e−iφ̄, respectively. Let us recall that
the holographic correlators depend only on the asymptotic behavior of the fluctuation fields
near the worldsheet boundary (see, e.g., (3.1)–(3.2)). Thus, given that yi → 0, θ̄ → θ̄cl → 1
and fy → 1 as ρ→ ±∞, it follows from (3.11) and (3.20) that Yi ∼ yi asymptotically. We
may therefore equivalently take the fluctuation field dual to Φi to be yi. Indeed, as can
be seen from the Lagrangian in (3.24), the yi have an SO(3) ⊂ SO(6) rotational symmetry
and their masses asymptotically satisfy m2

y → 0 as ρ→ ±∞, whose dual statements in the
dCFT are that the scalars Φi preserve an SO(3) ⊂ SO(6) R-symmetry and have scaling
dimension ∆ = 1.15 We will also shortly discuss what the string observables look like when
the fields dual to Z and Z̄ are expressed in terms of θ and φ, which are related to θ̄ and φ̄
by the field redefinitions in (3.20). For now we note that the masses of the θ and φ fields
satisfy m2

θφ → 0 asymptotically near the boundary (see (3.28)), which matches the fact that
Z and Z̄ have scaling dimension ∆ = 1. Finally, the displacement operators Da are dual
to the AdS5 embedding coordinates, Xa, a = 1, 2, 3, that are transverse to the Wilson line
on the boundary. Again because xa → 0 as ρ→ ±∞, it follows from (3.10) that Xa ∼ xa
asymptotically and therefore we may equivalently take the fluctuation field dual to Da to be

14To study correlators with ZJ at t = 0 and Z̄J at t =∞, we should instead use Poincaré coordinates
t, z that are related to the global coordinates by t + iz = eτ (tanh ρ + i sech ρ). These are related to the
coordinates in (3.33) by an SL(2,R) transformation.

15Recall that for a scalar, m2 = ∆(∆− d). In our case d = 1.
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xa. Indeed, as can be seen from the Lagrangian in (3.23), the xa have an SO(3) symmetry
of rotations in AdS5 about the classical string and their masses satisfy m2

x → 2 as ρ→ ±∞,
whose dual statements in the dCFT are that the Da have an SO(3) symmetry of rotations
in R4 about the Wilson line and have scaling dimension ∆ = 2.

The vertex operators dual to Φi, Da, Z and Z̄ are therefore:

vΦi(t) ≡ lim
z→0

2g
z
yi(z, t), vDa(t) ≡ lim

z→0

2g
z2 xa(z, t), (3.36)

vZ(t) ≡ lim
z→0

2g
z

sin(θ̄(z, t))eiφ̄(z,t), vZ̄(t) ≡ lim
z→0

2g
z

sin(θ̄(z, t))e−iφ̄(z,t). (3.37)

This makes (3.2) precise. Although the above vertex operators are defined using Poincaré
coordinates, we will take advantage of the simplicity of the classical string in global
coordinates and take the bulk-to-boundary limits using (3.34) and (3.35).

Given (3.14), the vertex operators on the classical solution simplify to:

vΦi |Ψcl = vDa |Ψcl = 0, vZ(t)|Ψcl = 2gceiφ0 t4 − t3
(t4 − t)2 , vZ̄(t)|Ψcl = 2gce−iφ0 t4 − t3

(t3 − t)2 .

(3.38)

These expressions for the classical vertex operators, which determine the leading large
charge behavior of the defect correlators consisting of powers of Z and Z̄ in the background
of ZJ and Z̄J , are familiar from [41]. Meanwhile, the subleading large charge behavior
due to the quadratic fluctuations about the classical solution are determined by sending
the endpoints of the bulk-to-bulk propagators to the boundary as outlined in (3.5)–(3.7).
In particular, given that the vertex operators dual to Φi and Da are zero on the classical
solution, the leading contribution to the defect correlators in (2.19) and (2.22) are given by

〈Φi(t1)Φj(t2)ZJ(t3)Z̄J(t4)〉
〈ZJ(t3)Z̄J(t4)〉

= Wyy(t1, t2)δij , (3.39)

〈Da(t1)Db(t2)ZJ(t3)Z̄J(t4)〉
〈ZJ(t3)Z̄J(t4)〉

= Wxx(t1, t2)δab, (3.40)

where the boundary-to-boundary propagator W (≡Wyy,Wxx) is related to the bulk-to-bulk
propagator G (≡ Gyy, Gxx) by

W (t1, t2) ≡ (2∆− 1)2 lim
z1→0+

z2→0+

2g
z∆

1

2g
z∆

2
G(t1, z1; t2, z2)

= (2∆− 1)2

22∆−2
g2

t2∆
12

χ2∆

|1− χ|∆ lim
ρ→η1∞
ρ′→η2∞

eη1∆ρeη2∆ρ′G(ρ, τ(t1); ρ′, τ(t2)). (3.41)

In the second line, we have sent the bulk point to the boundary in accordance with (3.34)
(see figure 4) and written the ratios of distances on the Wilson line coming from (3.35) in
terms of the conformal ratio χ defined in (2.15). Because of the translational symmetry
along τ , G depends only on the difference between τ(t1) and τ(t2), which reduces to

τ(t1)− τ(t2) = log
∣∣∣∣ t13
t14

t24
t23

∣∣∣∣ = − log |1− χ|. (3.42)
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(a) (b)

(c)

(d)

Figure 4. Sending the endpoints of the bulk-to-bulk propagators to the boundary in global ((a)
and (b)) and in Poincaré ((c) and (d)) coordinates, in accordance with (3.34). When the bulk points
are sent to opposite boundaries in global coordinates, as in (a), the light insertions on the Wilson
line are separated by the heavy insertions, as in (c). In this case χ > 1. When the bulk points are
sent to the same boundary in global coordinates, as in (b), the light insertions are between the two
heavy insertions, as in (d). In this case χ < 1.

Thus, the boundary-to-boundary propagator has the same conformal form as the defect
correlators in (2.19)–(2.22).

Finally, we express the vertex operators dual to the light insertions Z and Z̄ in terms
of the rescaled fluctuation fields θ and φ. We begin by expanding vZ in (3.37) to linear
order in θ and φ:16

vZ(t) = lim
z→0

2g
z

[
sin θcle

iφcl + cos θcl
fθ

eiφclθ + i
sin θcl
fφ

eiφclφ+ . . .

]

= vZ(t)|Φcl + eτ(t)+iφ0 lim
z→0

2g
z

(θ + iφ) + . . . . (3.43)

16Higher orders in θ do not contribute because θ/fθ ∼ e∓ρ as ρ → ±∞. On the other hand, because
φ/fφ → 1 as ρ → ±∞, the vertex operator has a series of corrections involving higher orders of φ,
eτ+iφ0 limz→0

2g
z

(
− φ2

2fφ
− iφ3

3!f2
φ

+ . . .
)
, which are not suppressed. There may be a more convenient choice

of coordinates than the one in (3.12)–(3.13) that avoids this undesirable behavior. However, practically
speaking, at the order in the large charge expansion that we are considering, we may simply ignore the higher
order terms in the vertex operators. Contractions between more than one pair of copies of φ in different
vertex operators involve at least two bulk-to-bulk propagators and are suppressed by 1/g. Furthermore, while
there is a contribution at the order of interest in the large charge expansion involving the self-contraction
between the two copies of φ in the term ∼ limz→0

φ2

zfφ
, it yields a constant that can be absorbed into the

definition of the vertex operator.
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To get to the second line, we used that cos θcl/fθ → 1 and sin θcl/fφ → 1 as ρ→ ±∞, which
follow from (3.14) and (3.21). Likewise, vZ̄ in (3.37) expanded to linear order is

vZ̄(t) = vZ̄(t)|Ψcl + e−τ(t)−iφ0 lim
z→0

2g
z

(θ − iφ) + . . . . (3.44)

Thus, the holographic expression for the leading and first subleading terms in the large
charge expansion of the defect correlators in (2.20)–(2.21) is:

〈Z(t1)Z̄(t2)ZJ(t3)Z̄J(t4)〉
〈ZJ(t3)Z̄J(t4)〉

= vZ(t1)|ΨclvZ̄(t2)|Ψcl + 2eτ(t1)−τ(t2)(Wθθ(t1, t2) + iWφθ(t1, t2)),

(3.45)
〈Z̄(t1)Z(t2)ZJ(t3)Z̄J(t4)〉

〈ZJ(t3)Z̄J(t4)〉
= vZ̄(t1)|ΨclvZ(t2)|Ψcl + 2eτ(t2)−τ(t1)(Wθθ(t1, t2)− iWφθ(t1, t2)),

(3.46)

where the boundary-to-boundary propagator W (≡ Wθθ,Wφθ) is again given in terms of
the bulk-to-bulk propagator G (≡ Gθθ, Gφθ) by (3.41) with ∆ = 1.

Finally, we note from (3.38) that the classical pieces in (3.45)–(3.46) are explicitly:

vZ(t1)|ΨclvZ̄(t2)|Ψcl = 4g2c2

t212

χ2

(1− χ)2 , vZ̄(t1)|ΨclvZ(t2)|Ψcl = 4g2c2

t212
χ2. (3.47)

4 Computing the Green’s functions

The last step in determining the defect four-point correlators is to compute the boundary-
to-boundary propagators. We begin by presenting a general way to express the bulk
propagators as integrals over Fourier modes conjugate to the global boundary coordinate,
send the bulk points to the boundary, and rewrite the resulting integral representation of
the boundary propagator as a series. We then apply the procedure to first compute Wyy,
which lets us determine Wθθ and Wθφ via the superconformal Ward identities, and then
compute Wxx.

4.1 Integral and series representations of the propagators

Taking advantage of the symmetry of the classical string in (3.14) under translations in the
global time coordinate τ , we write the yy and xx bulk-to-bulk propagators in their Fourier
representations:

G(ρ, τ ; ρ′, τ ′) ≡ 1
4πg

∫ ∞
−∞

dkeik(τ−τ ′)g(ρ, ρ′; k). (4.1)

Here, G ≡ Gyy and g(ρ, ρ′; k) ≡ gyy(ρ, ρ′; k) or G ≡ Gxx and g(ρ, ρ′; k) ≡ gxx(ρ, ρ′; k).
Noting the explicit form of the d’Alembertian on the classical string worldsheet in

global coordinates,

∂µ (√γγµν∂ν) = ∂

∂ρ

(√
cosh2 ρ− c2 ∂

∂ρ

)
+ 1√

cosh2 ρ− c2

∂2

∂τ2 , (4.2)
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and substituting the Fourier representations of Gyy and Gxx into (3.30) and (3.29), we find
that gyy and gxx satisfy d

dρ

(√
cosh2 ρ− c2 d

dρ

)
− k2√

cosh2 ρ− c2
−√γm2(ρ)

 g(ρ, ρ′; k) = −δ(ρ− ρ′), (4.3)

wherem2 ≡ m2
y orm2 ≡ m2

x, as appropriate. We additionally impose the boundary condition
g(ρ, ρ′; k) → 0 as ρ → ±∞, which gives the standard asymptotic behavior g ∼ e∓∆ρ.17

We also note the symmetries of g: g(ρ, ρ′; k) = g(ρ′, ρ; k) = g(−ρ,−ρ′; k) = g(ρ, ρ′;−k).
These properties follow from (4.3) and/or the discussion after (3.32). It follows that G only
depends on τ and τ ′ through the combination |τ − τ ′|.

The equation for g(ρ, ρ′; k) simplifies if we change variables from ρ to the compactified
coordinate

r ≡
∫ ρ

0

√
1− c2dρ′√

cosh2 ρ′ − c2
= −iF

(
iρ
∣∣∣ 1
1− c2

)
, (4.4)

where F(x|m) is the incomplete elliptic integral of the first kind. Equivalently, cosh ρ =
cn
(
ir| 1

1−c2
)
, where cn(x|m) is the Jacobi elliptic function.18 The asymptotic behavior of r

as ρ→ ±∞ will play an important role in what follows. It is given by

r ∼ ±
(
rm + r̄me

∓ρ +O(e∓2ρ)
)
, where rm ≡

√
1− c2K(c2) and r̄m ≡ −2

√
1− c2. (4.5)

Note that the change of variables in (4.4) is essentially the one that puts the induced
metric (3.16) in the conformal gauge form (up to rescaling by a constant factor).19

After the change of variables, (4.3) becomes d2

dr2 −
k2

1− c2 −

√
cosh2 ρ− c2√γm2

1− c2

∣∣∣∣
cosh ρ→cn

(
ir| 1

1−c2

)
 g(r, r′; k) = −δ(r − r

′)√
1− c2

. (4.6)

The solution to (4.6) may be written in the following piece-wise form:

g(r, r′; k) ≡ a(k)
[
gR(r; k)gL(r′; k)θ(r − r′) + gL(r; k)gR(r′; k)θ(r′ − r)

]
. (4.7)

Here, gL and gR solve (4.6) without the delta source term and satisfy the boundary
conditions gR → 0 as r → rm and gL → 0 as r → −rm. The normalization a(k) is fixed by
needing to reproduce the prefactor of the delta function in (4.6):20

a(k) ≡ − 1√
1− c2

(
dgR(r; k)

dr
gL(r; k)− dgL(r; k)

dr
gR(r; k)

)−1

. (4.8)

17Eq. (4.3) reduces to [e∓ρ d
dρ

(
e±ρ d

dρ

)
−m2|ρ→±∞]g = 0 in the regime ρ→ ±∞.

18Using (A.23), we can put the elliptic function in the form cn
(
ir| 1

1−c2

)
= dc(r/

√
1− c2|c2), which makes

it clearer that ρ 7→ r is a real map.
19See appendix E of [50] for the form of the solution in conformal gauge.
20Note that a(k) is independent of r, since d

dr
a(k)−1 = 0 because of (4.9)–(4.10). Furthermore, there is

a “gauge” freedom to rescale gR or gL by some λ 6= 0 because we impose a single homogeneous boundary
condition on these solutions. Because a(k) is rescaled by a compensating factor of 1/λ, g(r, r′; k) is unaffected.
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The explicit forms of the homogeneous differential equations that gL and gR solve for
the two different fluctuation modes are:(

− d2

dr2 + 2c2

1− c2 cn
(
ir| 1

1− c2

)−2
)
gL/Ryy (r; k) = c2 − k2

1− c2 g
L/R
yy (r; k), (4.9)(

− d2

dr2 + 2
1− c2 cn

(
ir| 1

1− c2

)2
)
gL/Rxx (r; k) = c2 − k2

1− c2 g
L/R
xx (r; k). (4.10)

We can always choose gL and gR to satisfy

gR(r; k) = gR(r;−k) = gL(−r; k). (4.11)

The second equality can be imposed because the masses are even under ρ → −ρ or,
equivalently, cn(ir| 1

1−c2 ) is even under r → −r. Finally, we note that the boundary
conditions impose the following asymptotic behavior:

gR ∼ (r − rm)∆ as r → rm, gL ∼ (r + rm)∆ as r → −rm. (4.12)

Eq. (4.1) and (4.7) give an explicit integral representation for the Gxx and Gyy in terms
of solutions to the ODEs in (4.9)–(4.10). The next step is to convert the integral in (4.1) into
a sum of residues. First, we replace τ − τ ′ by |τ − τ ′| in (4.1) (see the comment below (4.3))
and close the contour in the upper half-plane. There is no contribution from the arc at
infinity because of the eik|τ−τ ′| term as long as τ 6= τ ′. Next, we note that g(r, r′; k) has
poles where 1/a(k), the Wronskian of gR(r; k) and gL(r; k), is zero. For these values of k,
gR and gL are linearly dependent and define a single solution that vanishes at both r = rm
and r = −rm. Eqs. (4.9) and (4.10) take the form of the time-independent Schrödinger
equation with real potentials Vy(r) ≡ 2c2

1−c2 cn
(
ir| 1

1−c2
)−2

and Vx(r) ≡ 2
1−c2 cn

(
ir| 1

1−c2
)2

(and ~2/2/m = 1). Therefore, the solutions gL ∝ gR at the poles are naturally interpreted
as bound states of a one-dimensional particle with energy E = c2−k2

1−c2 moving in a potential
V (r) (≡ Vy(r), Vx(r)) with hard walls at r = ±rm (because of the boundary conditions on
gR and gL). As we will verify explicitly in sections 4.2 and 4.3, the poles of both gyy(ρ, ρ′; k)
and gxx(ρ, ρ′; k) lie on the imaginary k axis. Alternatively, this follows from the fact that
the energy eigenvalues are necessarily real21 and obey the bound E > c2

1−c2 , which means
the bound states only exist for k2 < 0. The lower bound on E is obvious for Vx(r), which
attains the minimum value 2

1−c2 at r = 0, and can be verified numerically for Vy(r). The
behavior of gR and gL at and away from the poles of g(r, r; k) is illustrated in figure 5.

Therefore, labelling the poles kn ∈ iR+, n = 0, 1, 2, . . ., we can write the bulk-to-bulk
propagator as

G(r, τ ; r′, τ ′) =
∞∑
n=0

eikn|τ−τ
′|
( 1

4πg

∮
kn
dk a(k)

)
gR(r; kn)gL(r′; kn). (4.13)

We used (4.7) and the fact that gR(r; kn)gL(r′; kn) = gL(r; kn)gR(r′; kn), which follows
because gL ∝ gR at k = kn. We have also assumed that the kn are simple poles of g(r, r′; k),
so we can evaluate gR and gL at kn and pull them out of the contour integral.

21The operator − d2

dr2 + V (r) is Hermitian with respect to the L2 norm on the interval [−rm, rm].
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Figure 5. The contour in the Fourier integral representation of the bulk and boundary propagators
runs along the real k axis (shown in blue). We can close it at infinity in the upper half plane and pick
up the residues at the poles, kn, n = 0, 1, 2, . . ., along the positive imaginary k axis. The insets sketch
the solutions gR(r; k) (orange) and gL(r; k) (purple) at a few representative values of k, including
at the poles (k0, k1 and k2), on the imaginary axis away from the poles, and on the real axis.

To convert the series for the bulk-to-bulk propagator into a series for the boundary-
to-boundary propagator, we send ρ → η1∞ and ρ′ → η2∞ (which sends r → η1rm and
r′ → η2rm) in accordance with (3.41). We can do so term-by-term in the series because each
gR(r; kn) or gL(r; kn) vanishes at both r = ±rm and combines with the divergent factor
eη∆ρ to yield a finite result in terms of kn. There are two distinct cases to consider: η1 = η2,
when the two bulk points approach the same boundary, and η1 = −η2, when the two bulk
points approach opposite boundaries. These two cases are related in a simple way, as we
can see by again exploiting the analogy with the Schrödinger equation in one dimension.
Because the parities of the energy eigenstates in an even potential alternate (with the ground
state being even), it follows that gR(r; kn) = gL(−r; kn) = (−1)ngR(−r; kn). Therefore,

lim
ρ→η∞

eη∆ρgR(r(ρ); kn) = lim
ρ→−η∞

e−η∆ρgL(r(ρ); kn) = ηn lim
ρ→∞

e∆ρgR(r(ρ); kn). (4.14)

This is useful because it is easier in practice to evaluate the first limit on the l.h.s. of (4.14)
when η = 1. This is because the limit of e∆ρgR(r(ρ); k) as ρ→∞ is finite for any k while
the limit as ρ→ −∞ is finite only if k = kn.

Combining (3.41) and (4.13), and applying (3.42) and (4.14), we finally arrive at the
following series representation for the boundary-to-boundary propagator:

W (t1, t2) = (2∆− 1)2

22∆−2
g

t2∆
12

χ2∆

|1− χ|∆
∞∑
n=0

[
(−η1η2)neikn| log |1−χ|| (4.15)

×
( 1

4π

∮
kn
dka(k)

)(
lim
ρ→∞

e∆ρgR(r(ρ); kn)
)2
]
.

Note that η1η2 = sgn(1− χ).
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It is also possible to send the bulk points to the boundary without writing the Fourier
integral as a sum of residues. This is mainly useful if we can interchange the limit and
the integral, which requires that the two bulk points be sent to opposite boundaries. For
instance, if we first send ρ→∞ inside the integrand of (4.1), then the step function in (4.7)
sets g(r, r′; k) = a(k)gR(r; k)gL(r′; k) and we must subsequently send ρ′ → −∞ because
gL(r′; k) does not vanish at ρ′ →∞ for real k. We find the following integral representation
for the boundary-to-boundary propagator, which is valid when χ > 1:

W (t1, t2) = (2∆−1)2

22∆π

g

t2∆
12

χ2∆

(χ−1)∆

∫ ∞
−∞

dkeik log(χ−1)a(k)
(

lim
ρ→∞

e∆ρgR(r(ρ);k)
)2
. (4.16)

In certain cases, this representation is more useful than (4.15).

4.2 Computing Wyy, Wθθ and Wφθ

We now implement the analysis developed in the previous section to find the boundary-
to-boundary propagator Wyy. Via (3.39) and (2.19), this determines the leading large
charge behavior of the defect correlator 〈ΦΦZJ Z̄J〉 / 〈ZJ Z̄J〉 and of G1(χ). Using the
superconformal Ward identities, we will then also determine GZZ̄(χ) and GZ̄Z(χ), which
are equivalent to Wθθ and Wφθ.

4.2.1 Computing Wyy

The key to computing Wyy analytically is to recognize that (4.9) can be put in the Jacobi
form of the Lamé differential equation. This ODE appeared previously in studies of one-
loop corrections to the energies of “elliptic” classical strings in AdS5 × S5 [62–65].22 We
summarize the equation in appendix A along with conventions and identities for the elliptic
integrals, Jacobi elliptic functions, and the theta functions. These special functions appear
prominently throughout this section.

In order to put (4.9) into the Jacobi form of the Lamé equation, we rewrite it in terms
of the new coordinate

σ ≡ cr√
1− c2

+ K
( 1
c2

)
+ iK

(
1− 1

c2

)
. (4.17)

Using the identities in (A.18)–(A.20) and (A.21)–(A.23), we can simplify (4.9) to[
−∂2

σ + 2
c2 sn

2
(
σ| 1
c2

)]
gR/Lyy (σ; k) =

(
1− k2

c2

)
gR/Lyy (σ; k). (4.18)

This matches the form of the Lamé equation given in (A.29), if we identify the parameter
m and the eigenvalue Λ to be:

m ≡ 1
c2 , Λ ≡ 1− k2

c2 . (4.19)

22These are strings whose solutions can be written simply in terms of the Jacobi elliptic functions, and
include the rotating folded string [62], pulsating strings [63], the string incident on anti-parallel lines on the
boundary [64], and a two-parameter family of strings incident on contours that interpolate between a circle
and antiparallel lines [65].
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Because they are ubiquitous in the following discussion, it is convenient to introduce
the following standard shorthand:

K ≡ K
( 1
c2

)
= cK(c2)− icK(1− c2), (4.20)

K′ ≡ K
(

1− 1
c2

)
= cK(1− c2). (4.21)

The second way of writing K and K′ follows from (A.3)–(A.4). Since K(c2) and K(1− c2)
are positive real numbers for c2 ∈ (0, 1), it follows that K′ and K + iK′ are also positive
real numbers, but K is complex. It will be convenient to work with K and K′ and convert
to explicitly real expressions only at the end.

We also note that as r runs from −rm to rm, σ in (4.17) runs from σ− to σ+ along the
real axis, where

σ− ≡ 0, σ+ ≡ 2K + 2iK′. (4.22)

As reviewed in appendix A, the solutions to the Lamé equation are known in terms of
theta functions. In particular, two linearly independent solutions to (4.18) are

f±(σ;α) ≡ H(±σ + α|m)
Θ(σ|m) e∓σZ(α|m). (4.23)

Here H, Θ and Z are defined in (A.32), and α is related to k by the transformation
sn
(
α
∣∣m) =

√
1 + k2 or, equivalently,

k ≡ icn (α|m) . (4.24)

Because the Jacobi elliptic functions are doubly periodic (see (A.11)), the α complex
plane is an infinite cover of the k complex plane. We will see that this means the argument
in section 4.1 allowing us to convert the integral representation of the boundary-to-boundary
propagator into a series representation can essentially be replicated in the α plane, but
with some modification.23 We will take the “fundamental unit cell” in the α plane to be the
rectangle with vertices at α = 0, α = 2K + 2iK′, α = −2iK′ and α = 2K. A representative
set of vertical and horizontal lines in the unit cell is depicted in figure 6(a), and its image
in the k plane is depicted in figure 6(b). The periodic placement of the other copies of the
unit cell in the α plane is shown in figure 7. In particular, it will be useful to note the
pre-images of the real and positive imaginary axes of the k plane in the α unit cell: as k
runs from −∞ to ∞ along the real axis (see figure 7(b)), α runs along the line segment
from −iK′ to iK′ + 2K (see figure 7(a)), and as k runs from 0 to ci to i to i∞ along the
imaginary axis (see figure 7(b)), α runs along the line segments from K to K + iK′ to 0 to
−iK′ (see figure 7(a)).

23One could in principle work entirely in the k plane instead, but it is more convenient to write the
intermediate expressions for the bulk-to-bulk propagators using α and the Jacobi theta functions and then
convert to expressions for the boundary-to-boundary propagators involving k only at the end.
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(a) Fundamental unit cell in α plane (b) Image of fundamental unit cell in k

plane

Figure 6. To express the propagator Gyy explicitly as a Fourier integral involving theta functions,
we need to change the integration variable from k, the wavenumber conjugate to global time τ , to α
via (4.24). The α plane is an infinite cover of the k plane. The fundamental unit cell in the α plane
is depicted in (a) and its image in the k plane is depicted in (b). Recall from (4.20)–(4.21) that K′

and K + iK′ are real.

Using (4.23), gR/Lyy can be written

gRyy(σ;α) = f+(σ;α)
f+(σ+;α) −

f−(σ;α)
f−(σ+;α) , (4.25)

gLyy(σ;α) = f−(σ;α)
f−(σ−;α) −

f+(σ;α)
f+(σ−;α) . (4.26)

These manifestly satisfy the boundary conditions gRyy(σ+;α) = gLyy(σ−;α) = 0. The parity
and quasi-periodicity of the theta functions also imply that gR/Lyy (σ;α) = g

L/R
yy (σ+ − σ;α)

and gL/Ryy (σ;α+ 2Ka+ 2iK′b) = g
L/R
yy (σ;α), for a, b ∈ Z, which are analogous to (4.11).

Next, we compute the boundary limits of gRyy(σ;α) and gLyy(σ;α). First, we note the
behavior of σ near the end points, which follows from (4.5) and (4.17):

σ ∼ σ± ∓ 2ce∓ρ, as ρ→ ±∞. (4.27)

Second, (4.12) implies that gRyy ∼ σ+ − σ as σ → σ+ and gLyy ∼ σ − σ− as σ → σ− (up to
multiplicative factors independent of σ). Thus, we find:

lim
ρ→∞

eρgRyy(σ;α) = lim
ρ→−∞

e−ρgLyy(σ;α) =−2c
dgRyy
dσ

∣∣∣∣
σ=σ+

=−4c(V (α|m)−Z(α|m)). (4.28)
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(a) Periodicity of unit cells in α plane (b) Image of α unit cells in k plane

Figure 7. The Jacobi elliptic function relating k and α in (4.24) is doubly periodic, satisfying
cn (α+ 2K + 2iK′|m) = cn (α|m), cn (α+ 2iK′|m) = −cn (α|m), as well as cn (−α|m) = cn (α|m).
Thus, the unit cells in the α plane are arranged as shown in (a). Each grouping of four neighboring
tiles labelled ‘Q’, ‘P’, ‘R’ and ‘S’, which are the pre-images of the four quadrants in the k plane as
shown in (b), is one unit cell. The intervals (−∞, 0) and (0,∞) on the real axis and (0, ci), (ci, i)
and (i,+∞i) in the k plane are indicated in (b) using black, blue, red and purple directed line
segments, respectively. Their pre-images in the α plane are likewise indicated in (a).

Here, V (u|m) is defined in (A.33). Furthermore, the normalization becomes

1
ayy(α) = −c

dgRyy(σ+;α)
dσ

gLyy(σ+;α) = 4c(V (α|m)− Z(α|m)) sinh
(
πiα

K
+ σ+Z(α|m)

)
.

(4.29)
To simplify this result, we used the fact that ayy(α) is independent of σ to evaluate the
Wronskian at σ = σ+, a point at which gRyy = 0 and dgRyy

dσ is given by (4.28).
Using dk

dα = −isn (α|m) dn (α|m) (note (4.24) and (A.14)) and (A.38) to express
V (α|m)−Z(α|m) in terms of the Jacobi elliptic functions, we can write the boundary limit
of the bulk-to-bulk propagator as the following integral:

lim
ρ→∞
ρ′→−∞

eρ−ρ
′
Gyy(ρ, τ ; ρ′, τ ′) = − ci

πg

∫ iK′+2K

−iK′
dα

cn (α|m) dn2 (α|m) exp (−cn (α|m) |τ − τ ′|)
sinh (F (α)) ,

(4.30)
where

F (α) ≡ πiα

K
+ 2(K + iK′)Z(α|m). (4.31)

This is equivalent to (4.16) except we changed the integration variable from k to α.
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The next step is to close the integration contour and pick up the residues at the poles.
The integration contour in the k plane can be closed using an arc at infinity, as in figure 8(d),
but the lifted contour in the α plane, shown in figure 8(a), is not closed. However, the
periodicity of the map from α to k, illustrated in figure 7, allows us to close the lifted
contour as in figure 8(b) at the cost of doubling the value of the integral. In particular, the
contribution from the top horizontal segment duplicates the contribution from the bottom
horizontal segment, while the contributions from the right and left vertical segments cancel.
One can also see that the integral over the closed contour in the α plane is twice the original
integral by noting the image of the closed contour in the k plane, which is given in figure 8(e).

To complete the argument, we need to identify the poles of the integrand of (4.30)
that lie inside the closed contour. The poles of cn(α|m) and dn(α|m), which are at
α = iK′ + 2aK + 2biK′, a, b ∈ Z, all lie outside the contour. Thus, the only poles that
contribute are the zeros of sinh (F (α)) located inside the contour, which lie on the imaginary
axis between −iK′ and iK′. We denote them αn, n ∈ Z, and they satisfy24

F (αn) = nπi. (4.32)

Because Z(z|m) is odd, α0 = 0 and α−n = −αn.
The result of deforming the contour to individually encircle the poles at each αn is

depicted in figure 8(c), and its image in the k plane is depicted in figure 8(f). Note that
each pole in figure 8(c) is encircled once while each pole in figure 8(f) is encircled twice.
This is because αn and α−n for n > 0 are mapped to the same point in the k plane, so the
contours individually encircling the two poles in the α plane are mapped to two contours
encircling the same pole in the k plane. Meanwhile, the pole at α0 = 0 is special: because
the map in (4.24) is even and therefore identifies points positioned antipodally with respect
to the origin in the α plane, the image of the closed loop encircling α = 0 with winding
number 1 is a closed loop encircling k = i with winding number 2.

In order to evaluate the residues of (4.30) at αn, it is convenient to note the following
elementary result: if f(z) and g(z) are analytic at zn, f(zn) = nπi, and f ′(zn) 6= 0, then

1
2πi

∮
zn
dz

g(z)
sinh (f(z)) = (−1)n g(zn)

f ′(zn) . (4.33)

Applying this result, we find that (4.30) can be written as

lim
ρ→∞
ρ′→−∞

eρ−ρ
′
G(ρ, τ ; ρ′, τ ′) = c

g

∞∑
n=−∞

(−1)n cn (αn|m) dn2 (αn|m) exp (−cn (αn|m) |τ − τ ′|)
F ′(αn) .

(4.34)

Conveniently, the identity (A.37) lets us write the derivative of Z(α|m), and therefore F ′(α),
in terms of the Jacobi elliptic functions. Additionally, we can use (A.3)–(A.6) and (A.7) to
express K, K′, E( 1

c2 ) in terms of K(c2) and E(c2), and we ultimately find

F ′(α) = 2
c

(
(1− c2)K(c2)− E(c2)

)
+ 2cK(c2)dn2 (α|m) . (4.35)

24More generally, sinh (F (α)) has zeros at α = αn + 2aK + 2biK′, a, b ∈ Z.
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(a) (b) (c)

(d) (e) (f)

Figure 8. Closing the integration contour in (4.30) and picking up the residues in both the α plane
(a)–(c) and the k plane (d)–(f). In (d), the integration contour along the real axis in the k plane is
closed with an arc at infinity. The lift of this closed contour to the α plane via the map in (4.24) is
not closed (a). Using the periodic identification of the α plane (see figure 7), the contour can be
closed as in (b) at the cost of doubling the integral. The doubling is clear from the image of the new
contour in the k plane (e). Finally, in the α plane we can pick up the residues of the poles on the
interval [−iK′, iK′] along the imaginary axis (c). This corresponds to picking up two copies of the
residues along the positive imaginary axis in the k plane (f).

Eq. (4.30) is the final integral representation and (4.35), supplemented with (4.32), is
the final series representation for the boundary limit of Gyy expressed in terms of the α
variables. Both expressions are perhaps more transparent when written in terms of the
original k variables, which gets rid of the elliptic functions and recasts the quantization
condition in (4.32) in a more friendly form.

We first rewrite (4.30). F can be written as a function of k using F (k) = πi +∫ k
0 dk

dα
dkF

′(α), and noting (4.35). Furthermore, using (4.24) and the identities in (A.16)–
(A.17), all of the elliptic functions can be expressed in terms of k. Ultimately, we find

Wyy(t1, t2) = g

π

1
t212

χ2

χ− 1

∫ ∞
−∞

dk
k
√

1− c2 + k2 cos(k log(χ− 1))
√

1 + k2 sinh
(
2
∫ k

0 d`
K(c2)`2+E(c2)√
1+`2

√
1−c2+`2

) . (4.36)

We used (3.41) to relate Wyy to the boundary limit of Gyy. Eq. (4.36) is valid when χ > 1.
Next, we rewrite (4.34). We introduce the “fluctuation energies”:

En ≡ −ikn ≡ cn (αn|m) , (4.37)
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which are defined implicitly via (4.32). Note that E0 = 1 and E−n = En. It is perhaps more
illuminating to define the energies in terms of an integral quantization condition, which
follows from writing (4.32) as nπi =

∫ αn
0 dαF ′(α) =

∫ En
1 dE′ dαdE′F

′(α) and using (4.35) and
the Jacobi elliptic function identities in (A.16)–(A.17) to simplify the result. This leads
precisely to (2.27).

Again using (A.16)–(A.17) to express the elliptic functions in (4.34) in terms of En, we
find that the boundary-to-boundary propagator finally reduces to:

Wyy(t1, t2) = 2g
π

1
t212

χ2

|1− χ|
∑
n∈Z

sgn(1− χ)nf(En)e−En| log |1−χ||, (4.38)

where f(E) is given in (2.29). In (4.38), we have replaced (−1)n in (4.34) by sgn(1− χ)n
in accordance with the discussion around (4.14)–(4.15). Thus, the series representation
in (4.38) is valid for both χ > 1 and χ < 1. Finally, G1(χ) = π

2g t
2
12Wyy(t1, t2) leads to (2.30).

Remarks about G1(χ). Let us make a few remarks about the final result for G1(χ).
Firstly, because En = E−n, the positive and negative terms in (4.38) can naturally be
combined. In general, the n = 0 term must be treated separately from the n ≥ 1 terms.
It is special both because E0 = 1 is independent of c2 (this corresponds to the fact that
the lowest operator in the conformal block expansion of the scalar four-point functions is
protected), and because k0 is the only pole in the k upper half plane that is mapped 1-to-1
with its pre-image α0 in the α plane.

Secondly, as a test of our results, we can consider the behavior of the four-point
functions when c2 = J = 0, in which case there are no large charges on the Wilson line and
the four-point functions reduce to two-point functions. (Likewise the classical string does
not rotate in S5 and the propagators for the S5 and AdS5 modes reduce to those of scalars
with m2 = 0 and m2 = 2 on AdS2). It follows in this case from (2.28) that ρ(E) = 1 and
En = |n| + 1, and from (2.29) that f(1) = 1 and f(E) = E

2 for E > 1.25 Therefore, the
series representation of Wyy(t1, t2) from (4.38) becomes

Wyy(t1, t2) = 2g
π

1
t212

χ2

|1− χ|

∞∑
n=0

sgn(1− χ)n(n+ 1)e−(n+1)| log |1−χ||. (4.39)

Given that 4∑∞n=1 ne
−nx = sinh−2 x

2 and 4∑∞n=1(−1)n+1ne−nx = cosh−2 x
2 , the series can

be explicitly summed for any χ. We arrive at the result

〈Φi(t1)Φj(t2)〉 = Wyy(t1, t2)δij = 2g
π

1
t212
δij . (4.40)

This correctly reproduces the leading behavior of the scalar two-point function in (2.17).
Thirdly, (2.30) is a compact representation of a function defined piecewise on χ ∈

(−∞, 0), χ ∈ (0, 1), χ ∈ (1, 2) and χ ∈ (2,∞). Unpacking the absolute values yields

G1(χ) = θ(−χ)G(−∞,0)
1 (χ) + θ(χ)θ(1− χ)G(0,1)

1 (χ)

+ θ(χ− 1)θ(2− χ)G(1,2)
1 (χ) + θ(χ− 2)G(2,∞)

1 (χ), (4.41)
25There is an order of limits issue when evaluating f(E) at E = 1 and c2 = 0. Namely,

limc→0 limE→1 f(E) = 2 limE→1 limc→0 f(E) = 1. Since E0 = 1 for all c, the n = 0 term in (4.38) is
to be evaluated at E = 1 before we take c→ 0.
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where θ(b − x)θ(a − x) is 1 if a < x < b and 0 otherwise and GI1(χ) denotes the series
representation of G1(χ) on the interval I ⊂ R. Explicitly, we have

G
(−∞,0)
1 (χ) =χ2 ∑

n∈Z

f(En)
(1−χ)En+1 , G

(0,1)
1 (χ) =χ2 ∑

n∈Z
f(En)(1−χ)En−1, (4.42)

G
(1,2)
1 (χ) =χ2 ∑

n∈Z
(−1)nf(En)(χ−1)En−1, G

(2,∞)
1 (χ) =χ2 ∑

n∈Z
(−1)n f(En)

(χ−1)En+1 . (4.43)

From the discussion around figure 2, one would expect G1 to behave piecewise on χ ∈
(−∞, 0), χ ∈ (0, 1) and χ ∈ (1,∞). The apparently special role of χ = 2 in (4.41) is an
artifact of the series representation. In particular, while the series representations G(1,2)

1 (χ)
and G(2,∞)

1 (χ) do not converge at χ = 2, the integral representation in (4.36) is perfectly
smooth at χ = 2.26 This is related to the convergence of the OPE as we will discuss shortly.

Finally, we comment on how (2.30) is consistent with G1(χ)→ 1 as χ→ 0, which is
imposed by the OPE limit in which the two light operators (or the two heavy operators)
approach each other (in this limit, the leading exchanged operator is the identity). As
χ→ 0, the exponentially damping term in (2.30) is turned off and the series diverges due
to the “infinite tail” consisting of terms with arbitrarily large values of n. The contribution
of the tail is captured by an integral over E weighted by the energy density ρ(E). Since
large values of E dominate, we may replace the energy density and form factor by their
asymptotic forms: ρ(E) ∼ 2K(c2)

π , f(E) ∼ π
4

E
K(c2) . Thus, as χ→ 0,

∑
n∈Z

f(En)e−En| log(1−χ)|∼
∫ ∞
Ecutoff

2ρ(E)f(E)e−E|χ|dE∼
∫ ∞
Ecutoff

Ee−E|χ|dE∼ 1
χ2 , (4.44)

where the leading behavior does not depend on the precise value of Ecutoff � 1. Eq. (4.44)
combines with the prefactor χ2/|1− χ| ∼ χ2 in (2.30) to yield G1(χ) ∼ 1, as desired. The
key input in this reasoning is the fact that 2ρ(E)f(E) ∼ E asymptotically for large E.
Likewise, G4(χ)→ 1 follows from (2.31) and 2ρ(E)f(E)(E2 − 1)/6 ∼ E3/6 asymptotically.
Our argument is similar in spirit to the general analysis in [54] of how the consistency of
the OPE in different channels constrains its large dimension asymptotics in a 1d CFT.

Convergence of the series representation. The divergence of the series in (4.42)–
(4.43) at χ = 2 can be understood in terms of the limited radius of convergence of the
OPE in a CFT. We recall that the product of two operators O1(s1) and O2(s2) can be
written as a convergent sum over primaries at a point s only if there exists a sphere centered
on s that contains O1(s1) and O2(s2) and no other operators (see, e.g., [66, 67]). As we
discuss in greater detail in section 5, the series representations of G1(χ) are essentially
conformal block expansions of the four-point function in the light-heavy channel, expanded
around the insertion point of the heavy operator. To illustrate concretely how this is related
to (4.42)–(4.43), let us use the conformal symmetry to set t1 = 1, t3 = 0 and t4 = ∞, in
which case 1− χ = t2. Then, G(−∞,0)

1 (χ) and G(2,∞)
1 (χ) are sums over positive powers of

1/t2 and correspond to taking the OPE of Φ(t2) with Z̄J (∞) centered at ∞, while G(0,1)
1 (χ)

26This is analogous to the fact that
∑∞

n=0 x
n diverges, whereas 1

1−x is perfectly smooth, at x = −1.
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and G
(1,2)
1 (χ) are sums over positive powers of t2 and correspond to taking the OPE of

Φ(t2) with ZJ (0) centered at 0. Note that a zero-sphere (i.e., two points) centered at 0 and
enclosing only Φ(t2) and ZJ(0) exists only if |t2| < 1 because the sphere would otherwise
also enclose Φ(1). Likewise, a zero-sphere centered at ∞ and enclosing only Φ(t2) and
Z̄J (∞) exists only if |t2| > 1. Therefore the OPE is indeed expected to diverge at t2 = 1,−1
or χ = 0, 2.

We can comment a little more concretely about the analyticity of the four-point
functions and the convergence of their series representations. The convergence of each of
the series in (4.42) and (4.43) is determined by the growth of En with n. For c ∈ (0, 1),
the energy density ρ(E) is sharply peaked at E = 1 and flattens out as E increases. More
precisely, ρ(E) ∼ constant/

√
E − 1 near E = 1,27 and ρ(E) ∼ 2K(c2)

π + O(1/E2) for large
E, from which it follows that En ∼ π

2K(c2) |n| + O(|n|0) for large |n|. The asymptotically
linear growth of En with |n| means that each GI1(χ) converges absolutely and is analytic
on a subset of the complex plane that includes the real interval I.28 Because the terms
in the series consist of non-integer powers of 1 − χ, the series are multi-valued and the
principal sheet should be defined with a branch cut. For example, G(−∞,0)

1 (χ) converges
for all χ ∈ C such that |χ− 1| > 1 with a natural choice of branch-cut being the interval
χ ∈ (2,∞); G(2,∞)

1 (χ) converges for all |χ− 1| > 1 with branch-cut χ ∈ (−∞, 0); G(0,1)
1 (χ)

converges for all 0 < |χ− 1| < 1 with branch-cut χ ∈ (1, 2); and G(1,2)
1 (χ) converges for all

0 < |χ− 1| < 1 with branch-cut χ ∈ (0, 1).
Each series in (4.42) and (4.43) can be analytically continued beyond its domain of

convergence. In particular, the integral in (4.36) provides the maximal extension of G(1,2)
1

and G(2,∞) and smoothly stitches together their disjoint domains of convergence, which lie
inside and outside the unit disk centered at χ = 1. Meanwhile, the analytic continuation
of G(−∞,0)

1 and G(0,1)
1 yields two additional distinct multi-valued functions on the complex

χ plane. These observations are in accordance with the general behavior discussed in
section 2.1. Similar comments apply to the series expressions for GZZ̄ , GZ̄Z and G4, which
we turn to in section 4.2.2 and 4.3.

4.2.2 Computing GZZ̄ and GZ̄Z from G1

Next, we determine integral and series representations of the defect four-point functions
in (2.20)–(2.21), in which the light insertions are Z and Z̄. According to (3.45)–(3.46),
the leading contribution in the large charge expansion is given by the classical vertex
operators in (3.47) and the first subleading correction is determined by the boundary-to-
boundary propagatorsWθθ andWθφ. One could try to solve for these boundary-to-boundary
propagators in the same way that we solved for Wyy. This approach is more cumbersome
for the θ and φ propagators than for the y propagators — both because m2

θφ is less simple
than m2

yy and because the Green’s equations solved by Gθθ and Gφθ are coupled — but one
can nonetheless make progress working perturbatively in small c2, as we demonstrate in
appendix C.

27Explicitly, ρ(E) ∼
√

2
π

K(c2)−E(c2)
c

1√
E−1 near E = 1.

28Absolute convergence follows from the ratio test and analyticity follows from applying Morera’s theorem.
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To determine the subleading corrections to GZZ̄(χ) and GZ̄Z(χ) (which are equivalent to
Wθθ andWθφ) for general c2, we will instead make use of the superconformal Ward identities.
The general solutions to the first order differential equations (2.26) can be written as

G2(χ) = χ2

(1− χ)2

(
C2(χ0) +

∫ χ

χ0
dx

(1
x
− 1

)
dG1
dx

)
, (4.45)

G3(χ) = χ2
(
C3(χ0)−

∫ χ

χ0
dx

1
x

dG1
dx

)
. (4.46)

After integrating by parts (with C2(χ0) and C3(χ0) absorbing the boundary terms) and
converting from G2, G3 to GZZ̄ , GZ̄Z using (2.23), this becomes:

GZZ̄(χ) = χ2

(1− χ)2

[
C2(χ0) + 1− χ

χ2 G1(χ) +
∫ χ

χ0
dx
G1(x)
x2

]
, (4.47)

GZ̄Z(χ) = χ2
[
C3(χ0) + 1− χ

χ2 G1(χ)−
∫ χ

χ0
dx
G1(x)
x2

]
. (4.48)

The remaining integrals in (4.47) and (4.48) are easy to evaluate when G1 is expressed
using the integral representation in (4.36) or the series representations in (4.42)–(4.43).

Let’s first determine the series representations of GZZ̄ and GZ̄Z . Because the series
representations of G1 are defined piecewise, we will likewise consider the four cases, χ ∈
(−∞, 0), (0, 1), (1, 2) and (2,∞) separately. We pick χ0 = ∞ when χ ∈ (−∞, 0) or
χ ∈ (2,∞) and χ0 = 1 when χ ∈ (0, 1) or χ ∈ (1, 2). Since G1(χ) is finite as χ → ∞ or
χ→ 1 (see (4.42)–(4.43)), it follows that for these values of χ0 the integration constants
can be written

C2(χ0) = lim
χ→χ0

(1− χ)2

χ2 GZZ̄ , C3(χ0) = lim
χ→χ0

1
χ2GZ̄Z . (4.49)

Furthermore, the limits χ → 1 and χ → ∞ correspond to Z and Z̄ becoming coincident
with ZJ and Z̄J in (2.20) and (2.21), which means that C2(χ0) and C3(χ0) can be expressed
in terms of certain normalized OPE coefficients.

In particular, the primary of lowest conformal dimension in the OPE of Z and ZJ (resp.
Z̄ and Z̄J) is ZJ+1 (Z̄J+1) and the primary of lowest conformal dimension in the OPE of
Z and Z̄J (Z̄ and ZJ) is ZJ−1 (Z̄J−1). Thus, the leading contributions to the OPE of Z
and ZJ and of Z̄ and ZJ are

Z(t)ZJ(t′) ∼ CZZJ Z̄J+1

NZJ+1Z̄J+1
ZJ+1(t′), Z̄(t)ZJ(t′) ∼ CZ̄ZJ Z̄J−1

NZJ−1Z̄J−1

1
(t− t′)2Z

J−1(t′) (4.50)

as t→ t′, with subleading terms suppressed by positive powers of t− t′. The relations with
Z ↔ Z̄ similarly hold. Then, sending t1 → t3 and t2 → t4, in which case χ ∼ t234

t13t24
, or

t1 → t4 and t2 → t3, in which case 1− χ ∼ t14t23
t234

, in (2.20)–(2.21) and applying the OPEs
in (4.50), we find the following four limiting values of GZZ̄ and GZ̄Z :

lim
χ→∞

GZZ̄(χ) = lim
χ→1

GZ̄Z(χ) = π

4g
CZZJ Z̄J+1CZ̄Z̄JZJ+1

NZJ+1Z̄J+1NZJ Z̄J
, (4.51)

lim
χ→∞

GZ̄Z(χ)
χ2 = lim

χ→1
(1− χ)2GZZ̄(χ) = π

4g
CZ̄ZJ Z̄J−1CZZ̄JZJ−1

NZJ−1Z̄J−1NZJ Z̄J
. (4.52)
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Since the normalized OPE coefficient in (4.52) is equal to the one in (4.51) up to a unit
shift in the large charge, it is useful to note that c2(J − 1) = c2(J) − dc2(J)

dJ + O(1/g2)
and dc2(J)

dJ = 1−c2
2gE(c2) , which follows from (2.10). Meanwhile, the OPE coefficient in (4.51)

was determined previously in [41] and is given in (2.12). Consequently, the constants of
integration in (4.49) with χ0 = 1 and χ0 =∞ simplify to

C2(∞) = C3(1) = gπc2 + π

2
1− c2

E(c2) , C2(1) = C3(∞) = gπc2. (4.53)

Substituting the appropriate series expression for G1 from (4.42)–(4.43) and (4.53) for
C2 and C3 in (4.47)–(4.48) determines GZZ̄ and GZ̄Z for any χ. For χ ∈ (0, 2), we find

GZZ̄(χ) = gπc2χ2

(1− χ)2 + χ2

|1− χ|
∑
n∈Z

sgn (1− χ)n+1 f(En)En − 1
En

e−(En−1)| log |1−χ||, (4.54)

GZ̄Z(χ) =
(
gπc2 + π

2
1− c2

E(c2)

)
χ2 (4.55)

+ χ2

|1− χ|
∑
n∈Z

sgn (1− χ)n+1 f(En)En + 1
En

e−(En+1)| log |1−χ||.

For χ ∈ (−∞, 0) ∪ (2,∞), we find

GZZ̄(χ) =
(
gπc2 + π

2
1− c2

E(c2)

)
χ2

(1− χ)2 (4.56)

+ χ2

|1− χ|
∑
n

sgn (1− χ)n+1 f(En)En + 1
En

e−(En+1)| log |1−χ||.

GZ̄Z(χ) = gπc2χ2 + χ2

|1− χ|
∑
n

sgn (1− χ)n+1 f(En)En − 1
En

e−(En−1)| log |1−χ||. (4.57)

One readily checks that (4.54)–(4.55) and (4.56)–(4.57) satisfy the crossing condition
in (2.24).

We can also determine the integral representations of GZZ̄ and GZ̄Z by applying (4.47)–
(4.48) and substituting (4.36) for G1(χ) = πt212

2g Wyy(t1, t2). We find

GZZ̄(χ) = χ2

(1− χ)2

[
gπc2 + π

4
1− c2

E(c2)

+
∫ ∞
−∞

dk

√
1− c2 + k2 [−k cos(k log(χ− 1)) + sin(k log(χ− 1))]

2
√

1 + k2 sinh
(
2
∫ k

0 d`
K(c2)`2+E(c2)√
1+`2

√
1−c2+`2

) ]
, (4.58)

GZ̄Z(χ) = χ2
[
gπc2 + π

4
1− c2

E(c2)

+
∫ ∞
−∞

dk

√
1− c2 + k2 [−k cos(k log(χ− 1))− sin(k log(χ− 1))]

2
√

1 + k2 sinh
(
2
∫ k

0 d`
K(c2)`2+E(c2)√
1+`2

√
1−c2+`2

) ]
. (4.59)
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Because
∫∞
−∞ cos(ak)f(k)dk → 0 as a → ±∞ and

∫∞
−∞

sin(ak)
k f(k) → sgn(a)πf(0) as

a→ ±∞ for a smooth function f(k), the integrals in (4.58) and (4.59) approach −π
4

1−c2
E(c2) and

π
4

1−c2
E(c2) as χ→ 1 and approach π

4
1−c2
E(c2) and −π

4
1−c2
E(c2) as χ→∞, respectively. Therefore, (4.58)

and (4.59) reproduce (4.51)–(4.52), as required by the OPE limit.

4.3 Computing Wxx

Finally, we implement the general analysis from section 4.1 to find the boundary-to-boundary
propagator Wxx. Via (3.40) and (2.22), this determines the leading large charge behavior
of defect correlators 〈DDZJ Z̄J〉 / 〈ZJ Z̄J〉 or, equivalently, G4(χ). The computation of Wxx

is very similar to that of Wyy. We will therefore suppress some of the details and will use
tildes to distinguish between parallel quantities.

We begin by rewriting (4.10) in terms of the new variable σ̃ ≡ ir. Using the identity
in (A.16) to simplify the result, we find:

[
−∂2

σ̃ + 2
1− c2 sn

2
(
σ̃| 1

1− c2

)]
gR/Lxx (σ̃; k) =

(
2 + k2 − c2

1− c2

)
gR/Lxx (σ̃; k). (4.60)

This is also in the Jacobi form of the Lamé equation given in (A.29) if we identify the
parameter, m̃, and the eigenvalue, Λ̃, to be:

m̃ ≡ 1
1− c2 , Λ̃ ≡ 2 + k2 − c2

1− c2 . (4.61)

It is again useful to introduce the following shorthand:

K̃ ≡ K
( 1

1− c2

)
=
√

1− c2(K(1− c2)− iK(c2)), (4.62)

K̃′ ≡ K
(

c2

c2 − 1

)
=
√

1− c2K(c2). (4.63)

The second way of writing K̃ and K̃′ follows from (A.3)–(A.4) and makes it clear that K̃′
and K̃ + iK̃′ are positive real numbers.

As the coordinate r runs from −rm to rm, the coordinate σ̃ runs from σ̃− ≡ −iK̃′ to
σ̃+ ≡ iK̃′ along the imaginary axis. Its behavior near the end points follows from (4.5):

σ̃ ∼ σ̃± ∓ 2i
√

1− c2e∓ρ, as ρ→ ±∞. (4.64)

Having recognized (4.60) as the Jacobi form of the Lamé equation with the identification
in (4.61), we identify two linearly independent solutions to be

f̃±(σ̃; α̃) ≡ H(±σ̃ + α̃|m̃)
Θ(σ̃|m̃) e∓σ̃Z(α̃|m̃). (4.65)

Here, α̃ is related to k by

k ≡ −isn (α̃|m̃) . (4.66)
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(a) Periodicity of unit cells in α̃ plane (b) Image of α̃ unit cells in k plane

Figure 9. The Jacobi elliptic function relating k and α̃ in (4.66) is doubly periodic, satisfying
sn(α̃+ 2K̃ + 2iK̃′|m̃) = −sn (α̃|m̃), sn (α̃+ 2iK′|m̃) = sn (α̃|m̃), as well as sn (−α̃|m̃) = −sn (α̃|m̃).
Thus, the unit cells in the α̃ plane are arranged as shown in (a). Each grouping of four neighboring
tiles labelled ‘Q’, ‘P’, ‘R’ and ‘S’, which are the pre-images of the four quadrants in the k plane as
shown in (b), is one unit cell. The intervals (−∞, 0) and (0,∞) on the real axis and (0,

√
1− c2i),

(
√

1− c2i, i) and (i,+∞i) in the k plane are indicated in (b) using black, blue, red and purple
directed line segments, respectively. Their pre-images in the α̃ plane are likewise indicated in (a).

Because of the double-periodicity of sn (α̃|m̃), the α̃-plane is an infinite cover of the k
plane. See figure 9. We take the fundamental unit cell to be the rectangle with vertices at
α̃ = −K̃− 2iK̃′, α̃ = −K̃, α̃ = K̃ + 2iK̃′, and α̃ = K̃. In particular, the pre-images of the
real and positive imaginary axes are: as k runs from −∞ to ∞ along the real axis α runs
from −iK̃′ to iK̃′ along the imaginary axis; as k runs from 0 to

√
1− c2i to i to +i∞ along

the imaginary axis, α̃ runs along the line segments from 0 to −K̃− iK̃′ to −K̃ to iK̃′.
Next, we determine gR/Lxx as linear combinations of f̃±. We cannot replicate (4.25)

and (4.26) because Θ(σ̃±|m̃) = 0. Instead, the appropriate linear combinations are

gRxx(σ̃; α̃)≡ 1
Θ(σ̃|m̃)

[
H(σ̃+α̃|m̃)
H(σ̃++α̃|m̃)e

(σ̃+−σ̃)Z(α̃|m̃)− H(−σ̃+α̃|m̃)
H(−σ̃++α̃|m̃)e

(σ̃−σ̃+)Z(α̃|m̃)
]
, (4.67)

gLxx(σ̃; α̃)≡ 1
Θ(σ̃|m̃)

[
H(−σ̃+α̃|m̃)
H(−σ̃−+α̃|m̃)e

(σ̃−σ̃−)Z(α̃|m̃)− H(σ̃+α̃|m̃)
H(σ̃−+α̃|m̃)e

(σ̃−−σ̃)Z(α̃|m̃)
]
. (4.68)

Let us check that these indeed satisfy the boundary condition gRxx(σ̃, α̃)→ 0 as σ̃ → σ̃+ (and
therefore also gLxx(σ̃, α̃)→ 0 as σ̃ → σ̃−). We note the behavior of Θ(σ̃|m̃) near σ̃ = σ̃+,

Θ(σ̃|m̃) = π

2K̃
θ′4

(
πτ̃

2 , q̃

)
(σ̃ − σ̃+) +O(σ̃ − σ̃+)2, (4.69)
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where τ̃ ≡ iK̃′
K̃ and q̃ ≡ eiπτ̃ . Furthermore, Θ is related to H after a translation by ±iK̃′:

H(σ̃ ± iK̃′|m̃) = ±iexp
(
∓ iπ

2K̃

(
σ̃ ± iK̃′

2

))
Θ(σ̃|m̃). (4.70)

This allows us to express the n-fold derivatives of H translated by half-periods (i.e., H(n)/H

evaluated at α̃± iK̃′) as sums of the lower derivatives of Θ (i.e., Θ(m)/Θ evaluated at α̃ for
0 ≤ m ≤ n). Recalling also that Z = Θ′/Θ, we ultimately find

gRxx(σ̃; α̃) = 2K̃
3π

1
θ′4

(
πτ̃
2 , q̃

) [Θ′′′(α̃|m̃)
Θ(α̃|m̃) −

3Θ′′(α̃|m̃)
Θ(α̃|m̃) Z(α̃|m̃) + 2Z3(α̃|m̃)

]
× (σ̃ − σ̃+)2 +O(σ̃ − σ̃+)3

= 2K̃
3π

1
θ′4

(
πτ̃
2 , q̃

)Z ′′(α̃|m̃)(σ̃ − σ̃+)2 +O(σ̃ − σ̃+)3. (4.71)

This reproduces the expected behavior in (4.12).
Thus, sending gRxx(σ̃; α̃) and gLxx(σ̃; α̃) to opposite boundaries yields

lim
ρ→∞

e2ρgRxx(σ̃; α̃) = lim
ρ→−∞

e−2ρgLxx(σ̃; α̃) = −8K̃
3π

1− c2

θ′4

(
πτ̃
2 , q̃

)Z ′′(α̃|m̃). (4.72)

Furthermore, the normalization can be simplified to

axx(α̃) = i√
1− c2

(
2dg

R
xx(0; α̃)
dσ

gRxx(0; α̃)
)−1

(4.73)

= − iΘ(0|m̃)2e
πK̃′
2K̃

4
√

1− c2

(
H(α̃|m̃)2

Θ(α̃|m̃)2 (V (α̃|m̃)− Z(α̃|m̃)) sinh
(
iπα̃

K̃
+ 2iK̃′Z(α̃|m̃)

))−1

,

where we used the fact that axx(α̃) is independent of σ̃ to evaluate the Wronskian at σ̃ = 0.
Using dk

dα̃ = −icn (α̃|m̃) dn (α̃|m̃) (note (4.66) and (A.13)) and (A.36)–(A.38) to express
various combinations of the theta functions in terms of the Jacobi elliptic functions, we may
write the boundary limit of the bulk-to-bulk propagators as the following integral:29

lim
ρ→∞
ρ′→−∞

e2ρ−2ρ′Gxx(ρ, τ ; ρ′, τ ′) = 4
√

1− c2

9πg

∫ iK̃′

−iK̃′
dα̃

[
exp

(
sn (α̃|m̃) |τ − τ ′|

)
(4.74)

× sn (α̃|m̃) cn2 (α̃|m̃) dn2 (α̃|m̃)
sinh

(
F̃ (α̃)

) ]
,

where

F̃ (α̃) ≡ iπα̃

K̃
+ 2iK̃′Z(α̃|m̃). (4.75)

29To simplify the factors independent of α̃ in front of the integral, we used i 2K̃
π

θ4(0,q̃)
θ′

4(πτ̃2 ,q̃) q̃
− 1

4 m̃
1
4 = 1, which

can be deduced from various identities in Ch. 1 of [68].
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This is equivalent to (4.16) except with a different parametrization of the integration
variable.

The next step is to close the contour in (4.74). The image of the contour in the k
plane can be closed in the upper-half plane at infinity. The lift to the α̃ plane, shown in
figure 10(a)., is not closed, but we can again use the periodicity of the map from α̃ to k to
write (4.30) as one half of the integral over the closed contour shown in figure 10(b).

The poles of the integrand in (4.74) that lie inside the closed contour are the zeros
of sinh(F̃ (α̃)) that lie on the line segment between iK̃′ and −2K̃− iK̃′ (see figure 10(c)),
which we denote by α̃n, n ∈ Z and which satisfy

F̃ (α̃n) = (n− 1)πi. (4.76)

Here, we choose to define α̃n by setting F̃ (α̃n) equal to (n− 1)πi instead of equal to nπi
because it is then possible to relate α̃n to αn by a linear transformation independent of
n. In particular, we checked numerically that the following identity relating F (z) defined
in (4.31) and F̃ (z) defined in (4.75) appears to hold:

F (iK′z)− F̃
(
−K̃− (K̃ + iK̃′)z

)
= πi, ∀z ∈ C. (4.77)

Combined with (4.32) and (4.76), this identity implies that αn and α̃n are related by

αn
iK′

= − α̃n + K̃
K̃ + iK̃′

. (4.78)

Namely, the positions of the poles in (4.30) along the line segment between −iK′ and iK′ in
the α plane are equal to the positions of the poles of (4.74) along the line segment between
−2K̃− iK̃′ and iK̃′ in the α̃ plane, as measured in units in which the two line segments have
unit lengths. This can be also been seen qualitatively by comparing figure 10 with figure 8.

As a consequence of (4.78), the quasi-energies defined in (4.37) are also equal to30

En = −sn (α̃n|m̃) . (4.79)

Again using (4.33) to evaluate the residues of (4.74) at α̃n, we arrive at

lim
ρ→∞
ρ′→−∞

e2ρ−2ρ′Gxx(ρ, τ ; ρ′, τ ′) (4.80)

= 4
√

1− c2

9πg

∞∑
n=−∞

(−1)n+1 sn (α̃n|m̃) cn2 (α̃n|m̃) dn2 (α̃n|m̃) exp (sn (α̃n|m̃) |τ − τ ′|)
F̃ ′(α̃n)

.

Using the identity in (A.37), we can write the derivative of Z(α̃)|m̃), and thus F̃ ′(α̃), in
terms of the Jacobi elliptic functions. Using (A.3)–(A.6) to write K̃, K̃′ and E( 1

1−c2 ) in
terms of K(c2) and E(c2), we find

F̃ ′(z) = 2i
√

1− c2K(c2) (dn (z|m̃)− 1) + 2iE(c2)√
1− c2

. (4.81)

30This follows from substituting the expression for αn in terms of α̃n from (4.78) into (4.37), noting that
K̃+iK̃′

K′ =
√

1−c2

c
, and using (A.21)–(A.23) and (A.18)–(A.20) to simplify the result.
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(a) (b) (c)

Figure 10. Closing the integration contour in (4.74) and picking up the residues in the α̃ plane.
The integration contour along the real axis in the k plane can be closed in the usual way at infinity in
the upper half-plane. The lift of the closed contour to the α plane via the map in (4.66) is depicted
in (a) and is not closed. Using the periodic identification of the α̃ plane as depicted in figure 9, the
contour in (a) can be closed as in (b) at the cost of doubling the integral. We can then pick up the
residues at the poles on the interval [−2K̃− iK̃′, iK̃′] parallel to the real axis, as depicted in (c).

Eq. (4.74) is the final integral representation and (4.80), supplemented with (4.76), is the
final series representation for the boundary limit of Gxx expressed in terms of the α̃ variables.
It is again more transparent to express both in terms of the original k variables.

We first rewrite (4.74). F̃ can be written as a function of k using F̃ (k) =
∫ k

0 dk
′ dα̃
dk′

dF̃
dα̃

and noting (4.81). Using (4.66) and (A.16)–(A.17), all of the elliptic functions can be
expressed in terms of k. Ultimately, we find

Wxx(t1, t2) = g

πt412

χ4

(1− χ)2

∫ ∞
−∞

dk
k
√

1 + k2
√

1− c2 + k2 cos(k log(χ− 1))
sinh

(
2
∫ k

0 d`
K(c2)`2+E(c2)√
1+`2

√
1−c2+`2

) . (4.82)

This is valid for χ > 1.
Finally, we use (A.16)–(A.17) and (4.79) to write all the elliptic functions in (4.80) in

terms of En. The boundary-to-boundary propagator simplifies to

Wxx(t1, t2) = 12g
π

1
t412

χ4

(1− χ)2

∑
n∈Z

sgn(1− χ)n+1f(En)E
2
n − 1
6 e−En| log |1−χ||. (4.83)

Here f(E) is the same function defined in (2.29). In the above expression, we have again
replaced (−1)n in (4.80) by sgn(1− χ)n in accordance with the discussion around (4.14)–
(4.15), and the resulting series representation for Wxx holds for both χ > 1 and χ < 1. Note
that because E0 = 1, the n = 0 term in the sum is zero. Using G4(χ) = π

12g t
4
12Wxx(t1, t2),

this leads to (2.31).
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Remarks about G4(χ). Now we make two remarks about the final result for G4(χ). We
can check that the four-point function reduces to the two-point function of the displacement
operators when c = 0. In this case the series representation of Wxx(t1, t2) from (4.83)
becomes

Wxx(t1, t2) = 2g
π

1
t412

χ4

(1− χ)2

∞∑
n=1

sgn(1− χ)n+1n(n+ 1)(n+ 2)e−(n+1)| log |1−χ||. (4.84)

Given that ∑∞n=2 n(n2 − 1)e−nx = 3
8 sinh−4 x

2 and ∑∞n=2(−1)nn(n2 − 1)e−nx = 3
8 cosh−4 x

2 ,
we can explicitly sum the series for χ > 1 and χ < 1. In both cases, we arrive at the result

〈Da(t1)Db(t2)〉 = Wxx(t1, t2)δab = 12g
π

1
t412
δab. (4.85)

This reproduces the leading behavior of (2.17).
Next, comparing (4.36) and (4.82) or (4.38) and (4.83), one sees that G1 and G4 satisfy:

G4(χ) = −χ
4

6

(
3 d

dχ
+ (χ− 1) d

2

dχ2

)
G1(χ)
χ2 . (4.86)

This identity, in analogy with (2.26), should essentially be a Ward identity that relates the
four-point functions in (2.13) and (2.14) that belong to the same superconformal multiplet.

5 Extracting OPE data from the four-point functions

In this section, we extract defect OPE data of operators with large charge from the four-point
defect correlators in (2.13)–(2.14). The analysis in this case is particularly simple because
the series representations of the defect correlators in (2.30)–(2.31) and (4.54)–(4.57) are
already essentially in the form of conformal block expansions, and because the conformal
blocks simplify when some of the operators have large dimensions. For a given four-point
function, each term in the series corresponds to a different exchanged operator, the energies
En determine the anomalous dimensions, and the coefficients in the series determine the
OPE coefficients. We also determine the small and large J behavior of the defect correlators
and the OPE data.

5.1 Extracting OPE data

In a 1d CFT, the conformal block expansion of a four-point function in the 12→ 34 channel
is given by [69]

〈O1(t1)O2(t2)O3(t3)O4(t4)〉 = 1
t∆1+∆2
21 t∆3+∆4

43

(
t42
t41

)∆1−∆2 ( t41
t31

)∆3−∆4

(5.1)

×
∑
∆
p∆χ

∆
2F1(∆ + ∆2 −∆1,∆ + ∆3 −∆4, 2∆, χ).

Here, we take the order of the operators to be t1 < t2 < t3 < t4, in which case 0 < χ < 1.
We will restrict our attention to four-point correlators in which O†1 = O3 and O†2 = O4 or
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O†1 = O4 and O†2 = O3, in which case we may choose a basis of primaries Ok such that they
satisfy the orthogonality condition 〈OkO†k′〉 ∝ δkk′ , and the OPEs in the 12→ 34 channel
take the form O1O2 ∼

∑
k
CO1O2Ok
N
OkO

†
k

Ok, O3O4 ∼
∑
k
CO3O4Ok
N
OkO

†
k

O†k. The sum over ∆ in (5.1) is

then a sum over the primaries Ok with ∆ = ∆k and p∆ = CO1O2OkCO3O4O
†
k
/N

OkO
†
k
.

We will study the conformal block expansions of the defect correlators in (2.13)–(2.14) in
the “light-heavy”→ “light-heavy” channels, in which case the exchanged operators appearing
in the OPEs of both “light-heavy” pairs of the external operators have large charge and
large conformal dimension. When multiple of the external and exchanged operators have
large conformal dimensions, the conformal blocks simplify. In particular, two asymptotic
expansions of the hypergeometric function that will be useful are

2F1(α, β, L+ γ, χ) = 1 + αβ

L
χ+O

( 1
L2

)
, (5.2)

2F1(L+ α, β, L+ γ, χ) = 1
(1− χ)β

(
1 + β(α− γ)

L

χ

1− χ +O

( 1
L2

))
. (5.3)

The first expansion follows from the series definition 2F1(a, b, c, χ) ≡ 1+ ab
c z+ a(a+1)b(b+1)

c(c+1) z2+
. . ., and is relevant when ∆ = ∆1 + O(1) = ∆4 + O(1) are large in (5.1). The second
expansion can be found in, e.g., [70] and is relevant when ∆ = ∆2 + O(1) = ∆4 + O(1)
are large.

OPE data from 〈ZJZZ̄Z̄J〉 and 〈ZZJ Z̄Z̄J〉. Consider the conformal block expansion
of 〈(ε1 · Φ(t1))Jε2 · Φ(t2)ε3 · Φ(t3)(ε4 · Φ(t4))J〉 in the 12→ 34 channel. It decomposes into
three different channels distinguished by the SO(5) irreducible representations (irreps) of
the operators that appear in the OPE of (ε1 · Φ)J and ε2 · Φ (and likewise in the OPE of
ε3 · Φ and (ε4 · Φ)J). In terms of Young tableaux, the decomposition of the tensor product
of the rank 1 and rank J symmetric traceless representations into irreps is given by

⊗
J︷ ︸︸ ︷

=
J+1︷ ︸︸ ︷

⊕

J︷ ︸︸ ︷
⊕

J−1︷ ︸︸ ︷
. (5.4)

The three SO(5) channels can be disentangled and studied separately using, for instance,
harmonic polynomials of ξ and ζ.31 However, for simplicity we choose instead to focus on
the four-point correlator 〈ZJ(t1)Z(t2)Z̄(t3)Z̄J(t4)〉, which has only one channel because the
operators appearing in the OPE of ZJ and Z and in the OPE of Z̄ and Z̄J all transform in

31For instance, for the case J = 1, the harmonic polynomials corresponding to the singlet, antisymmetric,
and rank 2 symmetric traceless representations are [71]: Y = 1, Y = ξ − ζ, Y = ξ + ζ − 2

5 . We can

therefore write the conformally invariant part of (2.13) as

G1 + ξG3 + ζG2 =
(
G1 + 1

5G3 + 1
5G2

)
Y + 1

2(G3 +G2)Y + 1
2(G3 −G2)Y ,

and then analyze each channel separately. The conformal block expansion of the three channels of the J = 1
correlator was studied in [19].
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the rank J + 1 representation.32 In principle, we do not lose anything with this restriction
because the operators in the three channels are in the same superconformal multiplets, so
their anomalous dimensions are the same and their OPE coefficients are related.

Relabelling 1→ 2→ 3→ 1 in (2.20) and putting the resulting correlator in the form
of (5.1) yields

〈ZJ(t1)Z(t2)Z̄(t3)Z̄J(t4)〉 = 4gNZJ Z̄J/π
tJ+1
21 tJ+1

43

(
t42t31
t241

)J−1 χJ+1

(1− χ)2GZZ̄

(
χ− 1
χ

)
. (5.5)

Here χ ≡ t12t34
t13t24

, as in previous sections. Applying (4.56), this may be explicitly written

〈ZJ(t1)Z(t2)Z̄(t3)Z̄J(t4)〉= 4gNZJ Z̄J/π
tJ+1
21 tJ+1

43

(
t42t31
t241

)J−1
[(
gπc2

(
1+ 2χ

J

)
+π

2
1−c2

E(c2)

)
χJ+1

+
∞∑
n=1

2f(En)En+1
En

χEn+J+1+O(1/g)
]
. (5.6)

Here, we have combined the n = 0 term in the sum in (4.56) with the term outside the sum
(and recalled that f(1) = gπc2

J ) and also combined the −n and n terms.
Eq. (5.6) is in the form of a conformal block expansion. Let us denote the primaries

appearing in the OPE of ZJ and Z by [ZJZ]n, the operators appearing in the OPE of Z̄ and
Z̄J by [Z̄Z̄J ]n, and their dimension by ∆n. Here n = 0, 1, 2 . . . is (for the moment) simply
a label to distinguish the different operators, ordered by increasing conformal dimension.
For instance, the lowest primaries are [ZJZ]0 ≡ ZJ+1 and [Z̄Z̄J ]0 ≡ Z̄J+1. We take the
primaries to satisfy [ZJZ]†n = [Z̄Z̄J ]n and 〈[ZZJ ]n[Z̄Z̄J ]n′〉 ∝ δnn′ .

We can now read off the OPE data of [ZJZ]n and [Z̄Z̄J ]n by matching (5.6) to the
general form of the conformal block expansion of 〈ZJZZ̄Z̄J〉 given in (5.1). Identifying
∆1 = ∆4 = J , ∆2 = ∆3 = 1 and ∆ = ∆n, and simplifying the conformal blocks using (5.2)
with the identification α = β = ∆n + 1− J , γ = 2(∆n − J) and L = 2J , we arrive at

〈ZJ(t1)Z(t2)Z̄(t3)Z̄J(t4)〉= 1
tJ+1
21 tJ+1

43

(
t42t31
t241

)J−1 ∞∑
n=0

CZJZ[ZJZ]nCZ̄Z̄J [Z̄Z̄J ]n
N[ZJZ]n[Z̄Z̄J ]n

χ∆n (5.7)

×
(

1+ (∆n+1−J)2

2J χ+O(1/g2)
)
.

We can now compare (5.7) with (5.6) term-by-term, and read off the OPE data. To
normalize the OPE coefficients by the norms of each of the operators, we note NZZ̄ =
4g
π

(
1− 3

8πg + . . .
)
, which follows from (2.17)–(2.18). Then, for the lowest operator, we find

∆0 = J + 1, |CZJZZJ+1 |2

NZZ̄NZJ Z̄JNZJ+1Z̄J+1
= gπc2 + π

2
1− c2

E(c2) + 3c2

8 +O(1/g). (5.8)

32This follows from the fact that ZJ(t1)Z(t2) → ei(J+1)θZJ(t1)Z(t2) under the rotation Φ4 + iΦ5 →
eiθ(Φ4 + iΦ5). By contrast, the highest weight states in the rank J − 1 symmetric traceless representation
and the mixed representation will transform like Oh.w. → ei(J−1)θOh.w. and Oh.w. → eiJθOh.w., respectively.
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This reproduces the OPE data that we used to fix the constants of integration of GZZ̄
and GZ̄Z in section 4.2.2. Meanwhile, the higher terms in the conformal block expansion
produce the new OPE data:

∆n = J + 1 + En,
|CZJZ[ZJZ]n |

2

NZZ̄NZJ Z̄JN[ZZJ ]n[Z̄Z̄J ]n
= 2f(En)En + 1

En
, (5.9)

where n = 1, 2, 3, . . .. In (5.8) and (5.9), we used CZ̄Z̄J [Z̄Z̄J ]n = c∗
ZJZ[ZJZ]n , which follows

from reflection positivity of the dCFT. Because the simplified form of the conformal
block in (5.2) is valid when α, β, γ � L, the OPE data in (5.9) is reliable as long as
∆n−J � J ∼

√
λ. In the strict large charge limit, where the charge J and string tension

√
λ

2π
are taken to infinity, (5.9) gives the OPE data of an infinite tower of non-protected operators.

As a non-trivial check, we can also extract OPE data from 〈Z(t1)ZJ(t2)Z̄(t3)Z̄J(t4)〉,
in which we switch the relative order of Z and ZJ . Relabelling 1↔ 2 in (2.20), writing the
correlator explicitly using (4.56), and putting it in the form of (5.1), we get

〈Z(t1)ZJ(t2)Z̄(t3)Z̄J(t4)〉= 4gNZJ Z̄J/π
tJ+1
21 tJ+1

43

(
t42
t31

)1−J
χJ+1GZZ̄(χ−1), (5.10)

= 4gNZJ Z̄J/π
tJ+1
21 tJ+1

43

[(
gπc2

(
1− 2

J

χ

1−χ

)
+π

2
1−c2

E(c2)

)
χJ+1

(1−χ)2

+
∞∑
n=1

(−1)n+1 2f(En)(En+1)
En

χJ+1+En

(1−χ)En+2 +O(1/g)
]
. (5.11)

We want to match (5.11) to the general form of the conformal block expansion in (5.1).
We again denote the primaries appearing in the OPE of Z and ZJ by [ZZJ ]n ≡ [ZJZ]n
and in the OPE of Z̄ and Z̄J by [Z̄Z̄J ]n. Then, identifying ∆1 = ∆3 = 1, ∆2 = ∆4 = J

and ∆ = ∆n in (5.1), which allows us to simplify the conformal blocks using (5.3) if we set
L = 2J , α = ∆n − 1− J , β = ∆n + 1− J , γ = 2(∆n − J), we may write

〈Z(t1)ZJ(t2)Z̄(t3)Z̄J(t4)〉 = 1
tJ+1
21 tJ+1

43

(
t42
t31

)1−J ∞∑
n=0

CZZJ [ZZJ ]nCZ̄Z̄J [Z̄Z̄J ]n
N[ZZJ ]n[Z̄Z̄J ]n

χ∆n

(1− χ)∆n+1−J

×
(

1− (∆n + 1− J)2

2J
χ

1− χ +O(1/g2)
)
. (5.12)

We can now compare (5.12) with (5.11) term-by-term. For the lowest operator, we find

∆0 = J + 1, CZZJZJ+1CZ̄Z̄J Z̄J+1

NZZ̄NZJ Z̄JNZJ+1Z̄J+1
= gπc2 + π

2
1− c2

E(c2) + 3c2

8 +O(1/g). (5.13)

For the higher terms in the conformal block expansion, we find

∆n = J + 1 + En,
CZZJ [ZZJ ]nCZ̄Z̄J [Z̄Z̄J ]n
NZZ̄NZJ Z̄JN[ZZJ ]n[Z̄Z̄J ]n

= (−1)n+1 2f(En)(En + 1)
En

, (5.14)

for n = 1, 2, 3, . . .. Eqs. (5.13)–(5.14) match (5.8)–(5.9) as long as CZZJ [ZJZ]0 = CZJZ[ZZJ ]0
and CZZJ [ZJZ]n = (−1)n+1CZJZ[ZZJ ]n , for n = 1, 2, . . .. This is a consequence of parity,
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assuming [ZJZ]n is odd for n = 2, 4, . . . and even otherwise. These parities of the exchanged
operators are consistent with the observation that in the generalized free field limit (i.e.,
g →∞, which can be probed via the J/g → 0 limit of the large charge results) composite
primaries can be constructed out of J + 1 copies of Z and 0, 2, 3, 4, . . . derivatives (thus, the
operators [ZZJ ]n for n > 0 contain n+ 1 derivatives), but no primary can be constructed
using a single derivative because ZJ∂Z ∼ ∂ZJ+1 is a descendent. See appendix D.2 for
more details.

The OPE data derived in this section come with a caveat. When extracting OPE data
from the conformal block expansion of a four-point function, if one does not make sure to
disentangle the contributions of operators with the same quantum numbers, the extracted
OPE data will in general be averages over the degenerate operators.33 Therefore, on general
grounds we would expect the OPE data in (5.9) and (5.14) to be “mixing-averaged.” On
the other hand, since we can precisely match the series representations of the four-point
functions to the conformal block expansion, it is possible that the operator mixing is not
relevant in the large charge limit. It would be good to understand this issue better.

5.2 Defect correlators and OPE data at small and large J

In this section we examine the small J and large J behavior of the defect correlators
derived in section 4 and of the OPE data derived in section 5.1.

Small J . We first consider the defect correlators in the regime 1 � J � g, in which
case J is small. The series in (2.30)–(2.31) and (4.54)–(4.57) allow us to determine with
minimal effort the small c2 expansions of the defect correlators, which can be converted to
small J expansions using the Taylor series relating J and c2 in this regime:

J = πc2 + 3πc4

8 + 15πc6

64 +O(c8), c2 = 1
π
J − 3

8π2J
2 + 3

64π3J
3 +O

(
J 4
)
. (5.15)

We begin by determining the behavior of En when c2 is small. Qualitatively, the
En will be spaced approximately uniformly with unit separation, and deviations will be
small in c2 as long as |n| is not too large. We can make this precise by determining the
expansion of En as a series in c2. Recall that E0 = 1 exactly for all c. Meanwhile, the
divergence of ρ(E) in (2.28) at E = 1 makes determining the series expansion of En for
n 6= 0 directly from (2.27) a bit subtle, because naively expanding ρ(E) in small c2 and then
integrating from 1 to En order by order yields divergent integrals at each order. Therefore,
we rewrite (2.27) in terms of an integral that runs from En to infinity, instead of from 1 to

33Indeed, part of the motivation to focus on the 〈ZZJ Z̄Z̄J〉 correlator instead of the other scalar correlators
is to reduce this issue of “operator mixing.” As discussed in [19] in the analysis of the J = 1 four-point
functions, at leading order in 1/g the operators on the Wilson line behave like generalized free fields, and
there is a unique composite primary transforming in the rank 2 symmetric traceless representation that
can be constructed out of two copies of the elementary scalar field and a given even number of derivatives.
Moreover, this composite operator does not mix with any other operators. However, as we discuss in
appendix D.2, for J > 1 there are multiple composite primaries transforming in the rank J + 1 symmetric
traceless representation that can be constructed out of J + 1 copies of the elementary scalar field and a
given number of derivatives, if the number of derivatives is sufficiently large.
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En, in order to avoid the problematic point E = 1:34

En −
∫ ∞
En

[
E2 − E(c2)/K(c2)√
E2 − 1

√
E2 + c2 − 1

− 1
]
dE = π

2K(c2)(1 + |n|). (5.16)

For fixed En > 1, it is now safe to expand the integrand in small c2 and then integrate
order by order, which yields rational functions of En at each order. Writing En = 1 + |n|+
E

(1)
n c2 +E

(2)
n c4 +E

(3)
n c6 + . . ., we can then determine the E(i)

n by matching powers of c2 on
both sides of (5.16). We ultimately find

E0 = 1, (5.17)

En = 1 + |n| − |n|+ 1
4 c2 − (|n|+ 1)(5n2 + 10|n| − 4)

64|n|(|n|+ 2) c4

− (|n|+ 1)(11n2 + 22|n| − 12)
256|n|(|n|+ 2) c6 + . . . . (n 6= 0) (5.18)

The above series expansion is reliable as long as |n| � 1/c2.
Given the series expansion of En, it is straightforward to expand the summands in (2.30)–

(2.31) and (4.54)–(4.57) in small c2 and evaluate the sums order by order. For instance, the
first two terms for the small c2 expansion of the defect correlators are given explicitly by:

G1(χ) = 1 + c2

4

[
(−2 + χ+ χ3) log |1− χ|

χ
− (2 + χ(χ− 2))(1− χ+ χ2 log |χ|)

(χ− 1)2

]
+O(c4),

(5.19)

G2(χ) = gπc2χ2

(1− χ)2 + c2

4(χ− 1)3

[
(1− χ)(1 + χ2)(χ+ (1− χ)2) log |1− χ| (5.20)

+ χ3(4− 3χ+ χ2) log |χ|
]

+O(c4),

G3(χ) = gπc2χ2 + c2

4(1− χ)2

[
χ(1− χ)(1− 2χ+ χ2) (5.21)

+ (1− χ)3(1 + χ+ 2χ2) log |1− χ|+ χ3(4− 5χ+ 2χ2) log |χ|
]

+O(c4),

G4(χ) = 1 + c2
[(1

2 −
1
χ

)
log |1− χ| − 1

]
+O(c4). (5.22)

Using the same procedure, it is relatively easy to determine the first few higher order
corrections to the defect correlators. Instead of providing explicit expressions, we summarize
the type of functions that appear in the expansion up to order c10, which may potentially
be useful if one were to try to identify a suitable ansatz to “bootstrap” these or related
correlators. At order c2n, the Gi(χ) are sums of products of the polylogarithm function Lis,35

34To arrive at (5.16), we used the following pair of results∫ ∞
1

dE√
E2 − 1

√
E2 + c2 − 1

= K(1− c2),
∫ ∞

1

[
E2 − 1√

E2 − 1
√
E2 + c2 − 1

− 1
]
dE = 1− E(1− c2).

35Recall that rational functions and the logarithm are special cases with polylogarithmic order 0 and 1:
Li0(z) = z

1−z and Li1(z) = − log(1− z).
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such that the sum of the polylogarithmic orders of any of the products of polylogarithmic
functions is less than or equal to n. For instance, for the first few terms in the small c2

expansion, the combinations of polylogarithms of “highest order” are logarithms at order c2,
products of pairs of logarithms at order c4, and terms schematically of the form Li3, log ·Li2
and log3 appearing at order c6. However, not every product of polylogarithms “allowed” by
the above rule appears at a given order. For instance, there is no Li2 term at c4, and no
Li4 or Li22 terms at c8.

We can also determine the small J expansion of the OPE data of the operators
exchanged in the light-heavy channel of 〈ZZJ Z̄Z̄J〉, which were determined for finite J
in (5.13)–(5.14). The first few terms in the expansions of the conformal dimensions are:

∆0 = J + 1, ∆n = J +
(

2 + n− n+ 1
4π J +O(J 2)

)
+O(1/g). (5.23)

The first few terms in the expansions of the OPE coefficients are:

CZZJZJ+1CZ̄Z̄J Z̄J+1

NZZ̄NZJ Z̄JNZJ+1Z̄J+1
= g

(
J − 3

8πJ
2+O(J 3)

)
+
(

1− 3J
8π +O(J 2)

)
+O(1/g2) (5.24)

CZZJ [ZZJ ]nCZ̄Z̄J [Z̄Z̄J ]n
NZZ̄NZJ Z̄JN[ZZJ ]n[Z̄Z̄J ]n

= (−1)n+1
(
n+2− (n+2)(2n−1)

4πn J +O(J 2)
)

+O(1/g). (5.25)

In (5.23) and (5.25), n = 1, 2, 3, . . .. Note that ∆1 = ∆0 + 2 when J = 0, which again
corresponds to the fact that there is no composite primary in the generalized free field
limit constructed out of J + 1 copies of Z and a single derivative (i.e., the n = 1 operator
corresponds in the free limit to a primary built out of Z and ZJ and two derivatives).

Finally, we note that an alternative approach to probing the defect correlators in the
1 � J � g regime is to first take J finite and expand in 1/g (which is the usual strong
coupling expansion of the Wilson line dCFT that can be studied using Witten diagrams on
the AdS2 dual string), and only then take J to be large. We show in appendix D that the
results of the finite charge analysis match the large charge results in (5.19)–(5.25).

Large J . The other limiting case of the defect correlators that is natural to consider is
the regime 1 � g � J , in which case J is large. The series in (2.30)–(2.31) and (4.54)–
(4.57) allow us to determine the leading behaviors of the defect correlators as J → ∞ or,
equivalently, c2 → 1. We note for convenience the asymptotic expansions relating J and c2

in this regime:

J = −2 log(1− c2) + 4(2 log 2− 1) +O((1− c2) log(1− c2)), (5.26)

c2 = 1− 16
e2 e
−J2 +O(J e−J ). (5.27)

We first determine the behavior of the energies, En, when J → ∞. Because K(c2)→∞
as c→ 1, it follows from (2.28) that, in this limit, the En condense into a continuum with a
smooth distribution. The density of the En, normalized by the large charge, is asymptotically

ρ(E)
J
∼ 1

2π
E√

E2 − 1
+ 2
π

√
E2 − 1
E

1
J

+O
(
e−
J
2
)
, as J → ∞. (5.28)
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The fine-grained behavior of the En when J → ∞ can also be determined from the above
density. Neglecting the exponentially suppressed term in ρ(E), which is valid as long as
|n| � eJ , we can evaluate the integral in (2.27) and the quantization condition becomes

J + 4
2π

√
E2
n − 1− 2

π
arctan

(√
E2
n − 1

)
+O(e−J /2) = |n|. (5.29)

This lets us determine En in various regimes. When |n| � J (i.e., E ≈ 1), the En may be
expanded in 1/J :

En = 1 + 2π2n2

J 2 − 2π4n4

J 4 − 64π4n4

3J 5 + 4π6n6

J 6 +O(1/J 7). (5.30)

When J � |n| � eJ (i.e., En � 1), the En may be expanded in 1/|n|:

En = 2π|n|
4 + J + 2π

4 + J + J − 4
4π|n| + 4− J

4πn2 +O(1/|n|3). (5.31)

Finally, when |n| ∼ J (i.e., En ∼ 1), we may write n = ηJ and expand in 1/J :

En =
√

1 + 4π2η2 + 8πη(−2πη + arctan(2πη))√
1 + 4π2η2

1
J

(5.32)

+ 8(2πη − arctan(2πη))(2πη − arctan(2πη) + 16π3η3)
(1 + 4π2η2) 3

2

1
J 2 +O(1/J 3).

The leading term in (5.32) precisely matches the expression for the energy of fluctuations
about the c2 = 1 string in the BMN limit, which was derived in [8]. In particular, [8] found
that the fluctuations have energies ωp =

√
1 + p2 and argued that the boundary conditions

fix the momenta to be pn = n
√
λ

2J with n ∈ Z. We note that in (5.32), 2πη = 2πng
J = n

√
λ

2J .
We can also study the four-point functions in the limit J → ∞. The condensation of

the En into a continuum makes it possible to convert the series representations of the Gi(χ)
in (2.30)–(2.31) and (4.54)–(4.57) into simple integrals. In particular, we first note that
f(E) in (2.29) asymptotically approaches

f(E)→ πE

J
− 4π
J 2

E2 − 1
E

+O
(
e−
J
2
)
, as J → ∞, (5.33)

and therefore ρ(E)f(E)→ E2

2
√
E2−1 is finite in the limit J → ∞. This is useful because, given

a smooth function g(E), the sum∑
n∈Z f(En)g(En) approaches the integral

∫
dE E2
√
E2−1g(E)

as J → ∞. When χ < 1 and the terms in the series are all positive, we can apply this to
the series in (2.30) and (2.31) and find

G1(χ)→ χ2

1− χ

∫ ∞
1

dE
E2

√
E2 − 1

e−E| log(1−χ)|

= χ2

1− χK
′′
0 (| log(1− χ)|) (5.34)

G4(χ)→ χ4

(1− χ)2

∫ ∞
1

dE
E2

√
E2 − 1

E2 − 1
6 e−E| log(1−χ)|

= 1
6

χ4

(1− χ)2

[
K ′′′′0 (| log(1− χ)|)−K ′′0 (| log(1− χ)|)

]
. (5.35)
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Similarly, from the piecewise series representations of GZZ̄ and GZ̄Z in (4.54)–(4.57), we
also find

GZZ̄(χ)→ gπ
χ2

(1− χ)2 + χ2

1− χ

∫ ∞
1

E2
√
E2 − 1

E ± 1
E

e−(E±1)| log(1−χ)|

= gπ
χ2

(1− χ)2 + χ2

(1− χ)2

[
K ′′0 (| log(1− χ)|)∓K ′0(| log(1− χ)|)

]
, (5.36)

GZ̄Z(χ)→ gπχ2 + χ2

1− χ

∫ ∞
1

E2
√
E2 − 1

E ∓ 1
E

e−(E∓1)| log(1−χ)|

= gπχ2 + χ2
[
K ′′0 (| log(1− χ)|)±K ′0(| log(1− χ)|)

]
, (5.37)

where the upper (lower) sign is for χ < 0 (0 < χ < 1). In these expressions, K0(z) is the
modified Bessel function of the second kind.

By contrast, when χ > 1, the series become alternating and vanish in the continuum
limit.36 Thus, we find the following simplified asymptotic behavior as J → ∞:

G1(χ), G4(χ)→ 0, GZZ̄(χ)→ gπ
χ2

(1− χ)2 , GZ̄Z(χ)→ gπχ2. (5.38)

These can also be seen from the fact that the sinh term in the integrands in (4.36), (4.58)–
(4.59) and (4.84) diverges as c2 → 1.

Finally, we note the large J expansion of the OPE data of the operators exchanged in
the light-heavy channel of 〈ZZJ Z̄Z̄J〉, which were determined for finite J in (5.13)–(5.14).
The leading terms in the expansions of the conformal dimensions are:

∆0 = J + 1, ∆n = J +
(

1 +
√

1 + 4π2η2 +O(1/J )
)

+O(1/g). (5.39)

The leading terms in the expansions of the OPE coefficients are:

CZZJZJ+1CZ̄Z̄J Z̄J+1

NZZ̄NZJ Z̄JNZJ+1Z̄J+1
= gπ

(
1+O

(
e−
J
2
))

+
(3

8 +O
(
e−
J
2
))

+O(1/g) (5.40)

CZZJ [ZZJ ]nCZ̄Z̄J [Z̄Z̄J ]n
NZZ̄NZJ Z̄JN[ZZJ ]n[Z̄Z̄J ]n

= (−1)n+1
(2π
J

(
1+
√

1+4π2η2
)

+O(1/J 2)
)

+O(1/g). (5.41)

Eq. (5.39) and (5.41) are valid for η ≡ n/J ∼ 1.
Having determined exact expressions for the energies and the four-point functions

(which can be evaluated numerically with relative ease), as well as simplified analytic results
when J is small or large, we close this section by summarizing our findings in a series

36The different behavior of the J → ∞ limit of the Gi(χ) for χ < 1 and χ > 1 is analogous to the following
simple example: given a normalizable, smooth function g : R→ R (e.g., g(x) = e−x

2
), the normalized sum

of g evaluated at uniformly spaced points separated by 1/N approaches either the integral of g over R or
zero as N →∞ depending on whether the sum is alternating:

lim
N→∞

1
N

∑
n∈Z

g
(
n

N

)
=
∫ ∞
−∞

g(x)dx, lim
N→∞

1
N

∑
n∈Z

(−1)ng
(
n

N

)
= 0.
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Figure 11. En is plotted for n = 0, 1, 2, . . . , 9 and J ∈ [0, 20]. The red dashed curves depict the
numerical values of En computed using (2.27). The blue curves depict the small c2 expansion given
in (5.18). The black curves depict the large J expansion given in (5.32).

of figures. Figure 11 illustrates the dependence of the first few energies En on J . We
include the exact results evaluated numerically via the quantization condition (2.27), and
compare them with the small c2 expansion in (5.18) and the large J expansion in (5.32).
Furthermore, figures 12–14 depict G1(χ), GZZ̄(χ), and G4(χ) for representative values of
c2, combining the simple analytic results for c2 = 0 given in (5.19)–(5.22) and for c2 = 1
given in (5.34)–(5.38) with the numerical implementation of the series representations given
in (2.30)–(2.31) and (4.54)–(4.57).

6 Connections to integrability

We now show that the results obtained in section 4 can be interpreted naturally in terms of
the (semi-)classical integrability of the string sigma model.

6.1 Classical integrability, spectral curve, and quasi-momentum

Let us first give a lightening review of the classical integrability of the closed string. For
more details, we refer the readers to the original papers [51–53] or a review [72].

Spectral curve, quasi-momenta. The Green-Schwarz string sigma model on AdS5×S5

is known to be classically integrable. The simplest way to see it is to recast its equations of
motion into the flatness of the Lax connection, which takes the following schematic form

[∂σ − Jσ , ∂τ − Jτ ] = 0 . (6.1)

Here Jσ,τ (σ, τ |x) is a (4|4)× (4|4) matrix-valued one-form built out of the worldsheet fields,
and it depends on an extra complex parameter x, which we call the spectral parameter.
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Figure 12. G1(χ) is plotted as a function of χ for representative values of c2. The solid blue curve
depicts G1(χ) = 1, corresponding to the edge case c2 = 0 (i.e., J = 0). The solid black curve depicts
G1(χ) for the edge case c2 = 1 (i.e., J =∞), given by (5.34) and (5.38). The dashed curves depict
G1(χ) for c2 = 0.1, 0.5, 0.9, evaluated numerically using the series representation in (2.30) for χ < 1
and using the integral representation in (4.36) for χ > 1. The numerical results on a small interval
around χ = 0 are excluded due to slow convergence of the series. One can also plot G1(χ) for χ > 1
using the series in (4.36); the resulting curve matches the curve from the integral representation,
but convergence is slow near χ = 2.

Figure 13. The fluctuation component of GZZ̄(χ) is plotted as a function of χ for representative
values of c2.
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Figure 14. G4(χ) is plotted as a function of χ for representative values of c2.

Using the Lax connection, one can define a monodromy matrix along a nontrivial contour
on the worldsheet, which is normally taken to be along the σ-direction:

Ω(x) ≡ P exp
(∫ 2π

0
Jσdσ

)
. (6.2)

Thanks to the flatness of the connection (6.1), the trace of the monodromy matrix does not
depend on the local deformation of the contour and is therefore conserved for any value of x.
In particular, when expanded in powers of x, it produces infinitely many conserved charges.

A more systematic way to compute the conserved charges and analyze the integrable
structure is to consider the spectral curve defined by37

sdet [y1− Ω(x)] = 0 . (6.3)

A standard way to parametrize the curve is to use the quasi-momenta, which are related to
eigenvalues of Ω(x) by yi(x) = eipi(x). More explicitly we have eight quasi-momenta

Ω(x) ∼ diag
(
eip̂1 , eip̂2 , eip̂3 , eip̂4 |eip̃1 , eip̃2 , eip̃3 , eip̃4

)
, (6.4)

where p̂j ’s describe the dynamics in AdS5 while p̃j ’s describe the dynamics in S5. These eight
quasimomenta together form an eight-sheeted covering of the complex x plane, connected
to each other by branch cuts (or poles38). The branch cuts connect two of the eight sheets,
and across each branch cut, the quasi-momenta have the following “integer” discontinuities:

pI(x+ iε)− pJ(x− iε) = 2πnIJ , nIJ ∈ N . (6.5)
37Here sdet stands for the super-determinant.
38Precisely speaking, the cuts corresponding to fermionic excitations in (6.7) are infinitesimal: namely

they are poles rather than branch cuts. For details, see [53]. Here we are slightly abusing the notations and
calling them “branch cuts”.
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Here I and J belong to the sets

I ∈ {1̃, 2̃, 1̂, 2̂} , J ∈ {3̃, 4̃, 3̂, 4̂} . (6.6)

As can be seen in (6.5) and (6.6), there are 16 different kinds of branch cuts and they
correspond to eight bosonic and eight fermionic excitations on the worldsheet:

AdS5 : (̂i, ĵ) , S5 : (̃i, j̃) , fermions : (̃i, ĵ) or (̂i, j̃) . (6.7)

In addition to branch cuts, the quasi-momenta have poles at x = ±1 whose residues are
correlated owing to the Virasoro constraints

{p̂1, p̂2, p̂3, p̂4|p̃1 p̃2, p̃3, p̃4} ∼
{α±, α±, β±, β±|α±, α±, β±, β±}

x± 1 . (6.8)

This property plays an important role when determining semi-classical corrections to the
energy as we review below.

The main advantage of using the spectral curve and the quasi-momenta is that one
can classify and construct them directly from their analytic properties without reference to
explicit classical string solutions. Since the quasi-momenta encode all the higher conserved
charges, it allows one to compute the quantum numbers of classical string solutions without
constructing them explicitly. In particular, the global charges of the classical solution can
be read off from the asymptotic behavior of the quasi-momenta at infinity:

p̂1
p̂2
p̂3
p̂4
p̃1
p̃2
p̃3
p̃4


= 1

2gx



+∆− S1 + S2
+∆ + S1 − S2
−∆− S1 − S2
−∆ + S1 + S2
+J1 + J2 − J3
+J1 − J2 + J3
−J1 + J2 + J3
−J1 − J2 − J3


+O(1/x2) . (6.9)

Here Sj ’s and Jj ’s are angular momenta in AdS5 and S5 respectively. Using this, we can
read off the conformal dimension of the classical solution in the following way:

∆ = lim
x→∞

gx(p̂1 + p̂2) . (6.10)

Semi-classical fluctuations and quasi-energy. Another advantage of the spectral
curve is that it also encodes semi-classical corrections to the energy of classical string
solutions. The details can be found in the original paper [53]; here we sketch the outline of
the derivation.

On the spectral curve, all the excitations on the worldsheet are described by branch cuts.
Thus small perturbations, i.e. semi-classical fluctuations, correspond to adding “infinitesimal
branch cuts” — namely poles — on the spectral curve. These poles also need to obey
the analyticity requirements reviewed above; in particular, they can only be added at xIJn
satisfying the following “quantization” condition:

pI(xIJn )− pJ(xIJn ) = 2πn n ∈ N . (6.11)
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After adding a pole, the quasi-momenta get shifted as pK(x) → pK(x) + δIJn pK(x). The
residue of the pole is constrained to be

δIJn pI(x) ∼ ± α(xIJn )
x− xIJn

, α(x) = 1
g(1− 1/x2) . (6.12)

Physically, this constraint guarantees that the perturbation corresponds to adding one unit
of quanta39 on the worldsheet, rather than a composite of several quanta.

There are several other conditions satisfied by δIJn pK which directly follow from the
analyticity requirements of the quasi-momenta: for instance, δIJn pI(x) should not modify the
integer discontinuities (6.5) of the existing cuts, and their residues at x = ±1 are correlated
to be

{δp̂1, δp̂2, δp̂3, δp̂4|δp̃1 δp̃2, δp̃3, δp̃4} ∼
{δα±, δα±, δβ±, δβ±|δα±, δα±, δβ±, δβ±}

x± 1 . (6.13)

Because of this latter condition, the perturbation δIJn affects all the pK ’s, not just pI and pJ .
In particular, any perturbation backreacts p̂1 and p̂2, and therefore changes the conformal
dimension ∆, which is determined by the asymptotics of p̂1,2.

In the actual computation, it is often convenient to compute the correction to ∆ in two
steps: first determine the correction to the quasi-momenta induced by the addition of a pole
at an arbitrary position x = y and later impose the quantization condition (6.11) y = xIJn .
As a result of the first step, we obtain an expression for δ∆ as a function of the position y:

qIJ(y) ≡ δIJy ∆ . (6.14)

Here δIJy denotes a perturbation induced by an addition of a pole at x = y that connects
the I-th and J-th sheets. The function q(y) is often called the off-shell frequency [53] or
the quasi-energy [73] in the literature. In this paper, we adopt the latter convention.

SU(2) two-cut solutions and the Wilson loop. The explicit forms of the quasi-
energies were written down in [53] for the so-called SU(2) symmetric two-cut solutions.
The general SU(2) solutions are dual to operators in N = 4 SYM which are made out of
two complex scalar fields (Z and Y ), and describe string solutions that have nontrivial
dynamics on S3 inside S5 but are point-like in AdS. In terms of the quasi-momenta, they
are characterized by the fact that only p̃2 and p̃3 are connected by branch cuts outside the
unit circle, while only p̃1 = p̃4 are connected inside the unit circle. As a consequence, the
quasi-momenta satisfy

p̃2 = −p̃3 , p̃1 = −p̃4 , p̂1,2 = −p̂3,4 = ∆x
2g(x2 − 1) . (6.15)

The symmetric two-cut solutions are a subclass of such solutions which contain only two
branch cuts that are symmetric around the origin (we take them to be on [a, a∗] and

39More precisely, it comes from requiring that the so-called filling fraction gets shifted by one. See [53]
for details.
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[−a∗,−a] with a∗ being the complex conjugate of a). For such solutions, the quasi-energies
for the S5 excitations are given by

q2̃3̃(y) = 4
b(1) + b(−1)

(
b(y)
y2 − 1 − 1

)
,

q1̃4̃(y) = −q2̃3̃(1/y) + q2̃3̃(0) ,

q2̃4̃(y) = q1̃3̃(y) = 1
2
(
q2̃3̃(y) + q1̃4̃(y)

)
,

(6.16)

with b(y) ≡
√

(y − a)(y − a∗)(y + a)(y + a∗).
In [50], it was pointed out that the S3 part of the quasi-momenta for the large charge

insertions on the Wilson loop coincide with those of the SU(2) two-cut solutions upon
setting a = eiθ0 , where θ0 is related to the parameter c used in sections 3 and 4 in the
following way:

sin θ0 = c . (6.17)

Performing the same substitution, we get the following quasi-energy q2̃3̃

q2̃3̃(y) → 1
sin θ0


√

(y − eiθ0)(y − e−iθ0)(y + eiθ0)(y + e−iθ0)
y2 − 1 − 1

 . (6.18)

Note that the expressions for the quasi-energies in (6.16) were derived for closed string
solutions while the insertions on the Wilson loops correspond to open string solutions with
nontrivial boundary conditions. Thus, the substitution (6.18) is not guaranteed to give a
correct answer for the Wilson loop (even though the quasi-momenta happen to coincide).
Nevertheless, we will see below that the conformal dimensions of operators in the heavy-light
channel on the Wilson loop defect CFT can be recast into a form almost identical to (6.18).

6.2 Four-point functions and the spectral curve

We now relate the results for the four-point function in section 4 to quantities on the
spectral curve. For simplicity, we focus on G1, the scalar four-point function corresponding
to the y-excitation (Wyy). Generalizations to other four-point functions should be possible
but we leave them for future investigations.

Quantization condition and the quasi-momenta. In section 4, we showed that G1
can be expressed as a sum over contributions from poles αn in the complex α plane satisfying
the quantization condition,

F (αn) = nπi , F (α) ≡ πiα

K
+ 2(K + iK′)Z(α|1/c2) , (6.19)

with K = K( 1
c2 ) and K′ = K(1− 1

c2 ). We now show that this is equivalent to the quantization
condition on the quasi-momentum.

The starting point of our analysis is the quasi-momentum p̃2 = −p̃3 identified in [50],
which coincides with the quasi-momentum for the SU(2) symmetric two-cut solution with
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a = eiθ0 :

p̃2(x) = π + 2K(c2)

√
1− x2e2iθ0

−x2 + e2iθ0

(2ix sin θ0
x2 − 1 − 1

)
+ 4E(c2)

cos θ0
F1 − 4 cos θ0K(c2)F2 ,

F1 = iF
[
sin−1

√
(e2iθ0 + 1)(eiθ0 − x)
(e2iθ0 − 1)(eiθ0 + x) ;− tan2 θ0

]
,

F2 = iE
[
sin−1

√
(e2iθ0 + 1)(eiθ0 − x)
(e2iθ0 − 1)(eiθ0 + x) ;− tan2 θ0

]
.

(6.20)

(Recall that c and θ0 are related by c = sin θ0.) At first sight, the quasi-momentum (6.20)
seems unrelated to the function F (α) in (6.19), but using several identities of elliptic
functions, one can rewrite it as follows:40

p̃2(x) = π

K
A(x)− 2i(K + iK′)Z

(
A(x)|1/c2

)
,

A(x) = F
[
sin−1

(2ix sin θ0
1− x2

)
; 1
c2

]
.

(6.21)

In this form, it is clear that the quasi-momentum and the function F are related by

F (A(x)) = ip̃2(x) , (6.22)

and the quantization condition (6.19) coincides precisely with the quantization condition
discussed in [53]; p̃2(x)− p̃3(x) = 2nπ.

Thus the series representation of the four-point functions can be identified with a sum
over contributions from points on the spectral curve satisfying the quantization condition.
The basic physical reason of this coincidence is the following; the points on the spectral curve
satisfying the quantization condition are known to correspond to normalizable fluctuations
around the classical string solution [53] while we saw in section 4 that the poles in the α
plane correspond to bound states in the one-dimensional Schrödinger problem that describes
linear fluctuations on the worldsheet. The two are basically the same concepts and therefore
it is natural that they are identified.

Conformal dimensions and quasi-energies. Having identified the quantization con-
ditions, we now consider the conformal dimensions of the operators exchanged in the
heavy-light channel, which are given by

En (= ∆n − J) = cn(αn|1/c2) . (6.23)

Surprisingly, this takes a simple form when expressed in terms of the spectral curve using
the relation α = A(x):

E(x) ≡ cn
(
A(x)

∣∣1/c2
)

=

√
(x− eiθ0)(x− e−iθ0)(x+ eiθ0)(x+ e−iθ0)

x2 − 1 . (6.24)

40The simplest way to verify the equality between (6.20) and (6.21) is to evaluate both numerically
(e.g. using Mathematica). Alternatively, one can prove the equivalence using identities that can be found
in [68, 74–77].
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The right hand side of this equation is almost identical to the expression for the quasi-energy
q2̃3̃ in (6.18). The differences are that E(x) does not come with an overall factor 1/ sin θ0
or the subtraction term −1.

Physically, the differences should come from the fact that the solution describing the
Wilson loop has a nontrivial profile in AdS while that of the SU(2) symmetric closed string
is point-like. To derive (6.24) rigorously, one has to develop a spectral-curve description of
open strings corresponding to the Wilson loop, which has not been done in the literature.41

Leaving this as an important future problem, here we present one possible scenario that
would lead to (6.24). Let us consider the following perturbation of the quasi-momentum p̃2,

δp̃2(x) = 1
b(x)

(
−b(y)α(y)

x− y
+ c′b(1)
x− 1 + c′b(1)

x+ 1 + b(y)
y

)
+ 1

2gx , (6.25)

with b(x) = (x−eiθ0)(x+eiθ0)(x−e−iθ0)(x+e−iθ0) and c′ ≡ b(y)
4g sin θ0(y2−1) . The perturbation

adds a pole at x = y with a required residue, satisfies all the properties reviewed above,
and changes the charge J3 by one unit (see (6.9)). This perturbation of p̃2 backreacts
on the AdS quasi-momenta p̂2 through the relation (6.13). To determine how precisely it
backreacts, we need to know the unperturbed p̂2 describing the large charge insertions on
the Wilson loop, which has not been worked out yet. Here we make an assumption42 that
the unperturbed p̂2 also has two symmetric branch cuts [eiθ0 , e−iθ0 ] and [−e−iθ0 ,−e−iθ0 ].
Under this assumption, we write a general ansatz

δp̂2(x) = 1
b(x)

(
c′ b(1)
x− 1 + c′ b(1)

x+ 1 + b(y)
y

+ c̃x

)
, (6.26)

where c̃ is a constant which is to be determined. To determine c̃, we use the fact that p̂2
and p̂1 are related by the inversion transformation (see [53])

p̂1(x) = −p̂2(1/x) , (6.27)

and their asymptotics are both given by the conformal dimension ∆, when the solution
does not carry Lorentzian spins:

p̂1(x)(= −p̂2(1/x)) ∼ p̂2(x) ∼ ∆
2gx (x→∞) . (6.28)

Imposing this condition also on the perturbation δp̂2(x), we can fix c̃ to be

c̃ = b(y)
2g(y2 − 1) . (6.29)

We can then read off the correction to the conformal dimension from δp̃2 by reading off the
behavior at infinity:

δy∆ = b(y)
y2 − 1 =

√
(y − eiθ0)(y − e−iθ0)(y + eiθ0)(y + e−iθ0)

y2 − 1 . (6.30)

41The spectral curve for open strings satisfying a different boundary condition has been constructed in [78].
42This is motivated by the fact that the AdS part of the solution can be obtained by the analytic

continuation of the sine-Gordon soliton, which describes the S3-part of the solution (see the discussion in
section 2.2 of [21]).
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This coincides with E(x), suggesting that E(x) can be interpreted as the quasi-energy. It is
an important future problem to construct the spectral curve for open strings and rigorously
show the equivalence of the two quantities.

Form factors as functions on the spectral curve. We can also rewrite the coefficients
of the series expansion, which we called the form factors in (2.29), as functions on the
spectral curve. This can be achieved simply by substituting (6.24) into (2.29):

f(x) ≡ f(E(x)) (6.31)

= π sin2 θ0
4

(1 + x2)2

1− x2
b(x)

E(sin2 θ0)(x2 − 1)2 −K(sin2 θ0)(x4 + 1) + 2K(sin2 θ0) cos 2θ0x2 .

As shown above, the form factor f is a product of a rational function in x and b(x), which
gives rise to square-root branch cuts. In addition, it satisfies an “inversion symmetry”

f(x) = −f(1/x) , (6.32)

which is reminiscent of the analogous relations for the quasi-momenta (6.27). These features
suggest that it might be possible to directly compute f(x) from the spectral curve. As we
saw in the previous section, the form factors are essentially the structure constants of OPE.
A method to compute the structure constants using the spectral curve and the classical
integrability of the sigma model was developed for a different class of three-point functions,
namely the “heavy-heavy-heavy” three-point functions of closed strings [79–82]. On the
other hand, the three-point functions analyzed in this paper are “heavy-heavy-light” three-
point functions [83, 84]. Conceptually, they are much simpler since one can compute them
by perturbing the known solution that describes the two-point function.43 Nevertheless, a
systematic integrability approach44 based on the spectral curve has not been developed yet.
Finding such a framework is an important future problem partly because it could shed a
new light on the relation between the three-point functions and the (quantum) spectral
curve, which has been a subject of active exploration in the past few years [14–16, 86, 87].

7 Conclusions

In this paper and in [41], we explored a connection between the Wilson loop defect CFT and
the large charge expansion of CFT. In this second paper, we analyzed the 1/J corrections
to the correlation functions of two large charge insertions with charge J and two light
insertions on the 1/2-BPS Wilson loop. We computed them holographically by studying
quantum fluctuations around a classical open string solution describing the large charge

43By contrast, a direct computation of the heavy-heavy-heavy three-point functions would require finding
a nontrivial saddle-point solution describing the three-point function, which is in general quite a difficult
task. The works [79–82] circumvented this problem by judiciously using the integrability and developing a
method that directly computes the three-point functions without constructing the saddle-point solution.

44One possible way to develop such a framework is to relate the Green’s functions to solutions to the
so-called auxiliary linear problem: as briefly discussed in [85], the solutions to the auxiliary linear problem
are related to small perturbations of the classical solution. It would be worth trying to make the connection
concrete in our setup.
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insertions. The final results are given by a series representation, which can be identified
with the conformal block expansion in the heavy-light channel. We also found an interesting
connection to classical integrability; each term in the series can be identified with a point
on the spectral curve satisfying a quantization condition, and the conformal dimensions
and the structure constants simplify when expressed in terms of the spectral parameter.

There are several interesting future directions to explore, some of which we mention
below. In this paper, we focused on correlation functions of operators inserted on the line
defect. A natural generalization would be to study observables that also involve “bulk”
single-trace operators, and in particular to explore their large charge limits. The one-point
functions of large charge operators in the presence of the Wilson line were studied in [88]
(see also [18, 89]), and it would be interesting to extend those calculations by looking at
correlation functions involving both bulk and defect insertions (these encode the bulk-defect
OPE coefficients that are important physical data in dCFTs).45 Both in this paper and
in [41], we focused on the Wilson loop in the fundamental representation, and another
natural generalization would be study higher-rank representations. The correlation functions
of light insertions in this setup have been analyzed in [16] using holography and localization.
Unlike the fundamental representation, the holographic duals are D-branes whose tension
is proportional to N . Thus, an analog of what has been done in this paper would be to
study the limit in which the charge of insertions goes to infinity with a ratio J/N fixed.
A D3 brane classical solution describing such a setup was found in [90]. Following the
same logic as in the analysis of the string, it would be interesting to study fluctuations
around this D-brane solution. Also, the recent works [38, 39] demonstrated that, by taking
a double-scaling limit in which one sends the rank of the representation to infinity while
correlating it with the coupling constant of the theory, one can analytically study various
properties of one-dimensional dCFT (in particular its renormalization group flow). This
can be viewed as yet another dCFT analog of the large charge sector of CFT, different from
what we studied in this paper, and it would be interesting to explore a possible connection.

On the integrability side, there are several important questions to be answered. An
obvious one is to construct a classical spectral curve for open strings describing the Wilson
loop (generalizing the result in [78]); this would allow us to rigorously establish the relation
between the quasi-energy and the conformal dimension that we found in this paper. A
more ambitious one is to develop a framework to compute the heavy-heavy-light structure
constants directly from the spectral curve. As mentioned briefly at the end of section 6, one
may be able to achieve this by using solutions to the auxiliary linear problem (or equivalently
sections of Lax connections) and it would be interesting to explore this direction.

Another possible direction is to reproduce the results in our paper from non-perturbative
integrability approaches such as the hexagon formalism [24–28]. In particular, a sub-class of
heavy-heavy-light three-point functions of single-trace operators at strong coupling were com-
puted using the hexagon formalism in [91], and it would be interesting to extend their analysis
to insertions on the Wilson loop and make comparison with our semi-classical predictions.

45Some bulk-defect correlation functions with finite charges were studied in [15] from localization and
string theory.
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As shown in [14, 41], the quasi-momentum and the spectral curve can also be computed
by supersymmetric localization. A surprise that we found in this paper is that they also
govern the spectrum and the structure constants of non-BPS excitations, which are not
computable by localization. It is then interesting to see if the same holds also for rank-1
N = 2 SCFTs studied in [46, 92, 93]. Also there, the two-point functions of large charge
BPS operators can be computed by supersymmetric localization and one obtains a matrix
model and a spectral curve that describe a large charge double scaling limit in which the
charge J is sent to infinity while a product g2J is kept fixed (with g being the Yang-Mills
coupling constant). The focus of the works [46, 92, 93] was on the correlation functions
of BPS operators, but it would be interesting to study non-BPS operators to see if the
spectral curve obtained from the matrix model in [93] encodes information about non-BPS
operators as well.

Finally, it is important to explore a “closed-string analog” of our analysis. In [94], the
heavy-heavy-light-light four-point functions of single-trace operators were studied at strong
coupling (see also the analysis at weak coupling in [95]). However they only computed the
leading order results, which correspond to the classical limit of the string sigma model. It
would be interesting to perform the computation at the next leader order by analyzing the
quantum fluctuations, which may reveal an interesting connection to the spectral curve and
semi-classical integrability as we saw in this paper.
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A Special functions and the Lamé equation

Three related families of special functions feature prominently in the text, especially in
section 4: the elliptic integrals of the first and second kind, the Jacobi elliptic functions,
and the theta functions. This appendix summarizes the conventions we adopt for these
functions and collects some standard identities. We also summarize the Lamé equation and
its solutions. Useful references include [68, 74–77].

Elliptic integrals. The incomplete elliptic integrals of the first and second kind are given
by

F(ϕ|m) ≡
∫ ϕ

0

dθ√
1−m sin2 θ

, E(ϕ|m) ≡
∫ ϕ

0

√
1−m sin2 θdθ. (A.1)

When ϕ = π
2 , they become the complete elliptic integrals of the first and second kind:

K(m) ≡ F
(
π

2
∣∣∣m) , E(m) ≡ E

(
π

2
∣∣∣m) . (A.2)
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In (A.1) and (A.2), ϕ is the amplitude and m is the parameter. The integrals in (A.1)
and (A.2) are defined for ϕ ∈ R and m ∈ [0, 1), and can be analytically continued to
complex ϕ and m. In particular, it is useful to note the continuation of K(m) and E(m) to
m ∈ (−∞, 0) and m ∈ (1,∞), which is given by the relations

K
(

1− 1
m

)
=
√
mK(1−m), (A.3)

K
( 1
m

)
=
√
m [K(m)− iK(1−m)] , (A.4)

E
(

1− 1
m

)
= 1√

m
E(1−m), (A.5)

E
( 1
m

)
= 1√

m
[E(m) + iE(1−m)− (1−m)K(m)− imK(1−m)] . (A.6)

In Mathematica, F(x|m) and E(x|m) are implemented by the commands EllipticF[x,m]
and EllipticE[x,m]. K(m) and E(m) are implemented by EllipticK[m] and EllipticE[m].

When m is unambiguous, one often adopts the shorthand K ≡ K(m), K′ ≡ K(1−m)
and E ≡ E(m), E′ ≡ E(1−m). It is also worth noting the Legendre identity:

EK′ + E′K−KK′ = π

2 . (A.7)

Jacobi elliptic functions. The Jacobi elliptic functions are the inverses of the incomplete
elliptic integrals. They also form a one-parameter family of doubly periodic meromorphic
functions on C such that the defining parallelogram has corners at s: z = 0, c: z = K,
n: z = iK and d: z = K + iK, where we adopt the shorthand from the previous section.
The Jacobi elliptic function with a simple zero at corner q and a simple pole at corner p is
denoted pq(z|m), where p and q can be s, c, n or d.46 There are therefore twelve distinct
elliptic functions. They are interrelated by the identities

pq (z|m) = 1
qp (z|m) , pq (z|m) = pr (z|m)

qr (z|m) , pq (z|m) = pr (z|m) rq (z|m) . (A.8)

Consequently, all the elliptic functions can be expressed in terms of just three: sn(z|m),
cn(z|m), and dn(z|m). In Mathematica, these are implemented using JacobiSN[z,m],
JacobiCN[z,m] and JacobiDN[z,m].

The aforementioned inverse relationship between the elliptic functions and the elliptic
integrals can be expressed

sinϕ = sn (F(ϕ|m)|m) , cosϕ = cn (F(ϕ|m)|m) . (A.9)

The aforementioned periodicity of the elliptic functions is given by (here, a, b ∈ Z)

sn
(
z + 2aK + 2biK′|m

)
= (−1)asn (z|m) , (A.10)

cn
(
z + 2aK + 2biK′|m

)
= (−1)a+bcn (z|m) , (A.11)

dn
(
z + 2aK + 2biK′|m

)
= (−1)bdn (z|m) . (A.12)

Furthermore, sn (−z|m) = −sn (z|m), cn (−z|m) = cn (z|m) and dn (−z|m) = dn (z|m).
46Uniqueness under such a construction requires a few additional conditions on pq(z,m).
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Some additional useful results include: the derivatives of the elliptic functions,

d

dz
sn (z|m) = cn(z|m)dn(z|m), (A.13)

d

dz
cn (z|m) = sn(z|m)dn(z|m), (A.14)

d

dz
dn (z|m) = −msn(z|m)cn(z|m), (A.15)

two identities involving the squares of the elliptic functions,

cn2 (z|m) + sn2 (z|m) = 1, (A.16)
dn2 (z|m) +m sn2 (z|m) = 1, (A.17)

and relations between different elliptic functions under translations by half of a period:

sn (z + K|m) = cd (z|m) , sn
(
z + iK′|m

)
= 1√

m
ns (z|m) , (A.18)

cn (z + K|m) = −
√

1−msd (z|m) , cn
(
z + iK′|m

)
= − i√

m
ds (z|m) , (A.19)

dn (z + K|m) =
√

1−mnd (z|m) , dn
(
z + iK′|m

)
= −ics(z|m). (A.20)

Finally, we note that the elliptic functions with parameter m are related to elliptic functions
with parameter 1−m by the “Jacobi imaginary transformations” and to elliptic functions
with parameter 1/m by the “Jacobi real transformations”:

sn(z|m) = −isc(iz|1−m), = 1√
m
sn
(√

mz| 1
m

)
, (A.21)

cn(z|m) = nc(iz|1−m), = dn
(√

mz| 1
m

)
, (A.22)

dn(z|m) = dc(iz|1−m), = cn
(√

mz| 1
m

)
. (A.23)

Theta functions. The theta functions are a family of four analytic functions of two
complex variables: the argument z ∈ C and the half-period ratio τ satisfying Im(τ) > 0. It
is standard to also define the nome, q ≡ eiπτ , which satisfies |q| < 1. In our conventions,
the two theta functions appearing in the text are given explicitly by the series

θ1 (z, q) ≡ −i
∞∑

n=−∞
(−1)nq(n+1/2)2

e(2n+1)iz, θ4 (z, q) ≡
∞∑

n=−∞
(−1)nqn2

e2niz. (A.24)

They are implemented in Mathematica using EllipticTheta[n,z,q] with n = 1, 4. Their
derivatives with respect to the argument are implemented using EllipticThetaPrime[n,z,q].

Evidently, θ1(−z, q) = −θ1(z, q) and θ4(−z, q) = θ4(z, q). Furthermore, the theta
functions are quasiperiodic in translations by π and πτ :

θ1(z + (a+ bτ)π, q) = (−1)a+bq−b
2
e−2ibzθ1(z, q), (A.25)

θ4(z + (a+ bτ)π, q) = (−1)bq−b2e−2ibzθ4(z, q). (A.26)
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Here a, b ∈ Z. This means their logarithmic derivatives satisfy

θ′1(z + (a+ bτ)π, q)
θ1(z + (a+ bτ)π, q) = θ′1(z, q)

θ1(z, q) − 2ib, (A.27)

θ′4(z + (a+ bτ)π, q)
θ4(z + (a+ bτ)π, q) = θ′4(z, q)

θ4(z, q) − 2ib. (A.28)

Here the prime denotes differentiation with respect to the argument.

The Lamé equation. The Lamé differential equation in Jacobi form is [76][
− d2

dx2 + 2m sn (x|m)2
]
f(x) = Λf(x). (A.29)

Two linearly independent solutions are [96]:

f±(x) ≡ H(x± α|m)
Θ(x|m) e∓Z(α|m), (A.30)

where α is related to m via

sn(α|m) = 1√
m

√
1 +m− Λ, (A.31)

and, letting K ≡ K(m), K′ ≡ K(1−m), E ≡ E(m), and q ≡ e−πK
′

K , the Jacobi H , Θ, and Z
functions can be defined in terms of the theta functions:

H(u|m) ≡ θ1

(
π

2
u

K
, q

)
, Θ(u|m) ≡ θ4

(
π

2
u

K
, q

)
, Z(u|m) ≡ Θ′(u)

Θ(u) = π

2K
θ′4
(
πu
2K , q

)
θ4
(
πu
2K , q

) .
(A.32)

Though not as standard, it is also convenient for us to also define

V (u|m) ≡ H ′(u|m)
H(u|m) = π

2K
θ′1
(
πu
2K , q

)
θ1
(
πu
2K , q

) . (A.33)

Z(u|m) can be implemented in Mathematica using JacobiZN[u,m],47 or simply by defining
it in terms of θ4. Likewise, Θ, H and V can be implemented in terms of θ1 and θ4.

We note the parity of these functions: H(u|m) = −H(−u|m), Θ(u|m) = Θ(−u|m),
Z(u|m) = −Z(−u|m) and V (u|m) = −V (−u|m). Due to (A.27)–(A.28), Z and V have
simple behavior under translations by 2K and 2iK′:

V (u± 2K|m) = V (u|m), V (u± 2iK′|m) = V (u|m)∓ πi

K
(A.34)

Z(u± 2K|m) = Z(u|m), Z(u± 2iK′|m) = Z(u|m)∓ πi

K
. (A.35)

47This is preferable to JacobiZeta[JacobiAmplitude[u,m],m], which does not extend properly into the
complex u plane.
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Finally, there exist combinations and derivatives of H , Θ, Z and V that are doubly periodic
and can therefore be expressed in terms of the Jacobi elliptic functions, including

H(u|m)
Θ(u|m) = m

1
4 sn (u|m) , (A.36)

Z ′(u|m) = dn2 (u|m)− E
K
, (A.37)

V (u|m)− Z(u|m) = cn (u|m) dn (u|m)
sn (u|m) . (A.38)

See [68, 74, 76], respectively.

B Details of the derivation of the quadratic action

This appendix fills in the steps to get from (3.18)–(3.19) to (3.22). First, we define the
fluctuations of θ̄ and φ̄ about their classical values:

θ̃ ≡ θ̄ − θcl, φ̃ ≡ φ̄− φcl. (B.1)

Then we expand Γµν to quadratic order in xa, ȳj , θ̃ and φ̃ and write it as a sum of five
terms:

Γµν = γµν + Γθµν + Γxxµν + Γyyµν + Γθφµν + higher than quadratic. (B.2)

Here, Γxxµν is quadratic in xa, Γyyµν is quadratic in ȳi, Γθµν is linear in θ̃ and φ̃, and Γθφµν is
quadratic in θ̃ and φ̃.48 The higher order terms in (B.2) that we neglect are interaction
terms for the fluctuation fields, which are suppressed relative to the quadratic action by
positive powers of 1/g.

Γxxµν and Γyyµν take simple explicit forms:

Γxxµν = ∂µx
a∂νx

a + hµνx
2, Γyyµν = cosh2 ρ− c2

cosh2 ρ
∂µȳ

i∂ν ȳ
i, (B.3)

while Γθµν and Γθφµν are more complicated:

Γθµν =
(
−θ̃f3 + 2if4∂τ φ̃ if4∂ρφ̃− f1∂τ θ̃

if4∂ρφ̃− f1∂τ θ̃ −2f1∂ρθ̃

)
, (B.4)

Γθφµν = ∂µθ̃∂ν θ̃ + f4∂µφ̃∂ν φ̃+
(
−f2θ̃

2 + 2iθ̃∂τ φ̃f3 iθ̃∂ρφ̃f3
iθ̃∂ρφ̃f3 0

)
. (B.5)

Here we have introduced the auxiliary functions,

f1(ρ) = c sinh ρ

cosh ρ
√

cosh2 ρ− c2
, f2(ρ) = cos 2θcl = cosh2 ρ− 2c2

cosh2 ρ
, (B.6)

f3(ρ) = sin 2θcl =
2c
√

cosh2 ρ− c2

cosh2 ρ
, f4(ρ) = sin2 θcl = c2

cosh2 ρ
. (B.7)

48Note, Γ is not a Christoffel symbol and the symbols x, y, θ and φ are labels rather than indices in (B.2).
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Expanding the Nambu-Goto Lagrangian in (3.18) to quadratic order in the fluctuations
yields

L ≡
√

Γ
√
γ

= 1 + Lθ + Lxx + Lyy + Lθφ + higher than quadratic, (B.8)

where the different terms are related to the different components of the metric by

Lθ ≡ 1
2γ

µνΓθµν , Lxx ≡ 1
2γ

µνΓxxµν , Lyy ≡ 1
2γ

µνΓyyµν , (B.9)

Lθφ ≡ 1
2γ

µνΓθφµν + 1
8
(
(γµνΓθµν)2 − 2γµαγνβΓθµνΓθαβ

)
. (B.10)

Let us consider each term in (B.8) in turn. Firstly, using integration-by-parts, we find
Lθ = 0 up to boundary terms, as expected for the linear variation about an extremum.
Secondly, the quadratic Lagrangian for the xa fluctuations is simply given by (3.18), and
the quadratic Lagrangian for the ȳi fluctuations is

Lyy = 1
2

cosh2 ρ− c2

cosh2 ρ
γµν∂µȳ

i∂ν ȳ
i. (B.11)

Since the kinetic term in (B.11) is not in the canonical form, we introduce the redefined fields
yi ≡ fy(ρ)ȳi, where fy(ρ) is given in (3.21). Getting rid of the resulting yi∂yi = 1

2∂(yiyi)
term using integration-by-parts yields the Lagrangian in (3.24).

Finally, though Lθφ is more cumbersome than the other terms, it can also be massaged
into a relatively nice form. We first write (B.10) explicitly:

Lθφ = 1
2

cosh2 ρ(cosh2 ρ− c2)
cosh4 ρ− c2 γµν∂µθ̃∂ν θ̃ + 1

2
c2 cosh2 ρ

cosh4 ρ− c2 γ
µν∂µφ̃∂ν φ̃

−
ic3 cosh ρ

√
cosh2 ρ− c2 sinh ρ

(c2 − cosh4 ρ)2 (∂ρθ̃∂τ φ̃− ∂τ θ̃∂ρφ̃)

−
ic(c2 − 2 cosh4 ρ)

√
cosh2 ρ− c2

(cosh4 ρ− c2)2 θ̃∂τ φ̃

− (c4 − 2c2 cosh4 ρ+ cosh6 ρ)
2(c2 − cosh4 ρ)2 θ̃2 + c2(cosh2 ρ− c2) sinh 2ρ

4(c2 − cosh4 ρ)2 ∂ρ(θ̃2). (B.12)

We can combine the second and third lines above using the product rule and integration-
by-parts to get rid of the ∂ρ derivatives. Likewise, we use integration-by-parts to convert
the ∂ρθ̃2 term in the fourth line into a θ̃ mass term. Finally, to put the kinetic terms in the
first line in canonical form, we introduce the redefined fields θ ≡ fθ(ρ)θ̃ and φ ≡ fφ(ρ)φ̃,
where fθ(ρ) and fφ(ρ) are again given in (3.21). Using integration-by-parts one last time to
get rid of the θ∂θ and φ∂φ terms, we finally arrive at (3.26).

C Four-point functions perturbatively at small J

In this appendix, we study Wyy, Wxx, Wθθ and Wφθ by perturbatively solving the Green’s
equations in (3.29)–(3.32), treating c2 as a small parameter. This is in contrast to the
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discussion in section 5.2, where we expanded the finite c2 series for the boundary propagators
in (2.30)–(2.31) and (4.54)–(4.57) in small c2. The analysis in this appendix serves as an
independent check of the results in section 5.2. It also allows us to calculate Wθθ and Wφθ

directly via the semiclassical analysis of the string discussed in section 3, instead of using
the Ward identities and inputs from localization, as in section 4.2.2.

We expand the boundary propagator W (≡Wyy,Wxx,Wθθ,Wφθ) in c2:

W (t1, t2) = W0(t1, t2) + c2W1(t1, t2) + . . . . (C.1)

We will determine Wyy, Wθθ and Wφθ to linear order and Wxx to zeroth order for simplicity.

Perturbative calculation of Wyy. We begin by determining Wyy to linear order in c2.
We apply the formalism in section 4.1, and in particular (4.15), essentially without modifi-
cation. The first step is to find gRyy(r; k) from its differential equation, (4.9), supplemented
with the boundary condition gRyy(rm; k) = 0, where rm =

√
1− c2K(c2). Then ayy(k) is

found in terms of gRyy(r; k) via (4.8).
We expand gRyy in c2: gRyy(r; k) = gRyy,0(r; k) + c2gRyy,1(r; k) + . . .. Expanding (4.9) to

linear order in c2 yields the following two differential equations solved by gRyy,0 and gRyy,1:(
d2

dr2 − k
2
)
gRyy,0(r; k) = 0,

(
d2

dr2 − k
2
)
gRyy,1(r; k) = (k2 + cos 2r)gRyy,0(r; k). (C.2)

Furthermore, expanding gRyy(rm; k) = 0 to linear order in c2 (note that rm = π
2 −

π
8 c

2 + . . .)
yields the following boundary conditions for gRyy,0 and gRyy,1:

gRyy,0

(
π

2 ; k
)

= 0, gRyy,1

(
π

2 ; k
)
− π

8
dgRyy,0
dr

∣∣∣∣
r=π

2

= 0. (C.3)

The explicit solutions to (C.2) are:

gRyy,0(r; k) = 2 sinh
(
k

(
π

2 − r
))

, (C.4)

gRyy,1(r; k) = 1
8(1 + k2)

[
2k cosh

(
k

(
π

2 − r
))(

(π − 4r)(1 + k2)− 2 sin 2r
)

(C.5)

− 8 cos2 r sinh
(
k

(
π

2 − r
))]

.

Given these expressions, the boundary limit of gRyy simplifies significantly:

lim
ρ→∞

eρgRyy(r; k) = r̄m
dgRyy
dr

∣∣∣∣
rm

= 4k − 2k
1 + k2 c

2 + . . . . (C.6)

We used (4.5) and noted that r̄m = −2 + c2 + . . .. Meanwhile, (4.8) yields the normalization:

ayy(k) = 1
4k sinh πk + c2

16

[ 2
k(1 + k2) sinh πk −

π cosh πk
sinh2 πk

]
+ . . . . (C.7)
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The poles of ayy(k) in the upper half plane are at kn = ni for n = 1, 2, 3, . . .. They are of
degree 1 at order c0, and degree 2 at order c2, which reflects the fact that a simple pole
can appear as a higher order pole when treated perturbatively (e.g., if w = w0 + c2w1 + . . .

then 1
z−w = 1

z−w0
+ w1c2

(z−w0)2 + . . .). Consequently, we need to pull the factor

eik|τ |ayy(k)
(

lim
ρ→∞

eρgRyy

)2
= eik|τ |

[
4k

sinh πk − c
2
(

2k
(1 + k2) sinh πk + πk2 cosh πk

sinh2 πk

)
+ . . .

]
,

(C.8)

back inside the contour integral in order to apply (4.15), which assumes the poles at kn are
simple. Here, for ease of notation, we use

τ ≡ τ(χ) ≡ log |1− χ|. (C.9)

Evaluating the residues of (C.8), we find at order c0:

2πiRes
k=ni

[
eik|τ |ayy(k)

(
lim
ρ→∞

eρgRyy

)2∣∣∣∣
c0

]
= 8(−1)n+1ne−n|τ | (C.10)

and at order c2:

2πiRes
k=i

[
eik|τ |ayy(k)

(
lim
ρ→∞

eρgRyy

)2∣∣∣∣
c2

]
= −3e−|τ | (C.11)

2πiRes
k=ni

[
eik|τ |ayy(k)

(
lim
ρ→∞

eρgRyy

)2∣∣∣∣
c2

]
= 2(−1)n+1

[ 2n
n2 − 1 − 2n+ n2|τ |

]
e−n|τ |. (C.12)

We need to treat the residue at k = i separately from the other residues.
Finally we expand Wyy(t1, t2) = Wyy,0(t1, t2) + c2Wyy(t1, t2) + . . . and apply (4.15) at

each order. Up to the index shift n 7→ n+ 1, the c0 result reproduces (4.39):

Wyy,0(t1, t2) = 2g
π

1
t212

χ2

|1− χ|

∞∑
n=1

sgn(1− χ)n+1ne−n|τ |. (C.13)

The c2 correction is given by

Wyy,1(t1, t2) = g

2π
1
t212

χ2

|1− χ|

[
−3

2e
−|τ | +

∞∑
n=1

sgn(1− χ)n+1
( 2n
n2 − 1 − 2n+ n2|τ |

)
e−n|τ |

]
.

(C.14)

The series can be summed explicitly for all χ. Using Wyy(t1, t2) = π
2g t

2
12G1(χ), we can

compare the result with the c2 term in (5.19), and we find perfect agreement.

Perturbative calculation of Wxx. Next, we determine Wxx to zeroth order in c2.49 We
need to find gRxx(r; k) from (4.10), supplemented with the boundary condition gRxx(rm; k) = 0.
To zeroth order, the differential equation becomes(

d2

dr2 − 2 sec2 r − k2
)
gRxx,0(r; k) = 0, (C.15)

49We study Wyy to linear order and Wxx only to zeroth order because the zeroth order ODE in (C.2) is
nicer than (C.15), and makes the perturbative analysis simpler for Wyy than Wxx.
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and the boundary condition is gRxx,0(π2 ) = 0. Two linearly independent solutions to (C.15)
are e±kr

2 (k ± tan r), and the linear combination that satisfies the bounary condition is

gRxx,0(r; k) = k cosh
(
k

(
π

2 − r
))
− sinh

(
k

(
π

2 − r
))

tan(r). (C.16)

The boundary limit of gRxx,0 simplifies to

lim
ρ→∞

e2ρgRxx,0(r; k) = r̄2
m

2
d2gRxx,0
dr2

∣∣∣∣
rm

= 4
3k(1 + k2). (C.17)

We used rm = π
2 and r̄m = −2 to zeroth order. Moreover, (4.8) yields the normalization

axx,0(k) = 1
k(1 + k2) sinh kπ . (C.18)

Thus, the combination

eik|τ |axx,0(k)
(

lim
ρ→∞

e2ρgRxx,0

)2
= 16

9 e
ik|τ |k(1 + k2)

sinh kπ (C.19)

has simple poles at kn = ni, n = 2, 3, 4, . . . in the upper half plane. It is analytic at k = 0,±i
even though these are double poles of axx,0(k). Thus, we can apply (4.15) with the slight
modification that n = 2 is the first term in the sum. Given the residue

2πiRes
k=ni

[
eik|τ |axx,0(k)

(
lim
ρ→∞

e2ρgRxx,0

)2]
= 32

9 (−1)nn(n2 − 1)e−n|τ |, (C.20)

the sum for the zeroth order expression for Wxx becomes

Wxx(t1, t2) = 2g
π

1
t412

χ4

(1− χ)2

∞∑
n=2

sgn(1− χ)ne−n| log |1−χ||n(n2 − 1). (C.21)

This reproduces (4.84), up to the index shift n 7→ n+ 1.

Peturbative calculation of Wθθ and Wφθ. Next, we turn to the computation of Wθθ

and Wφθ to linear order in c2. The analysis is conceptually similar to that of Wyy, but
slightly more complicated because the θ and φ modes are coupled by the −isθ

↔
∂φ term in

the Lagrangian in (3.26).
We begin by noting that the prefactor of the term coupling θ and φ, which is given

in (3.27), satisfies s → − 1
cosh2 ρ

as c → 0. Likewise the mass of the θ and φ fields, given
in (3.28), satisfies m2

θφ → −
1

cosh2 ρ
as c → 0, in contrast with the masses of the x and y

fluctuations, which approach m2
xx → 2 and m2

yy → 0. This makes the direct analysis of
the propagators of the θ and φ fields in (3.26) somewhat cumbersome even when c2 = 0.
Therefore, it is useful as a preliminary step to rotate the fields as follows:(

θ

φ

)
→
(

cos iτ sin iτ
− sin iτ cos iτ

)(
θ

φ

)
. (C.22)
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This leaves invariant the form of the Lagrangian in (3.26), as well as the Green’s equations
in (3.32)–(3.31), except that the coupling term s and the mass m2

θφ are transformed to

s→ s+γττ = c2 sinh2 2ρ
2(cosh4 ρ−c2)2 , (C.23)

m2
θφ→m2

θφ−γττ−2s =− c2 cosh2 ρ

(cosh4 ρ−c2)3

[
cosh4 ρ(8−8cosh2 ρ+cosh4 ρ) (C.24)

+2c2(2−8cosh2 ρ+5cosh4 ρ)+c4
]
.

These now have the desired property s,m2
θφ → 0 as c → 0. The rotation in (C.22) also

modifies the contribution of the θ and φ fluctuations in the dictionary in (3.45)–(3.46) to

〈Z(t1)Z̄(t2)ZJ(t3)Z̄J(t4)〉
〈ZJ(t3)Z̄J(t4)〉

= vZ(t1)|ΨclvZ̄(t2)|Ψcl +2(Wθθ(t1, t2)+iWφθ(t1, t2)), (C.25)

〈Z̄(t1)Z(t2)ZJ(t3)Z̄J(t4)〉
〈ZJ(t3)Z̄J(t4)〉

= vZ̄(t1)|ΨclvZ(t2)|Ψcl +2(Wθθ(t1, t2)−iWφθ(t1, t2)). (C.26)

Now we can determine Wθθ and Wφθ to linear order in c2 in essentially the same way
that we determined Wyy. We first write Gθθ and Gφθ as Fourier integrals:

Gθθ(ρ, τ ; ρ′, τ ′) = 1
4πg

∫ ∞
−∞

dkeik(τ−τ ′)gθθ(ρ, ρ′; k), (C.27)

Gφθ(ρ, τ ; ρ′, τ ′) = 1
4πg

∫ ∞
−∞

dkeik(τ−τ ′)gφθ(ρ, ρ′; k). (C.28)

Substituting these into the Green’s equations in (3.31)–(3.32) yields the following coupled
equations for gθθ(ρ, ρ′; k) and gφθ(ρ, ρ′; k): d

dρ

(√
cosh2 ρ−c2 d

dρ

)
− k2√

cosh2 ρ−c2
−√γm2

θφ

gθθ−2k√γsgφθ =−δ(ρ−ρ′), (C.29)

 d
dρ

(√
cosh2 ρ−c2 d

dρ

)
− k2√

cosh2 ρ−c2
−√γm2

θφ

gφθ+2k√γsgθθ = 0. (C.30)

It is again sensible to change variables from ρ to r via (4.4). Then (C.29) and (C.30) become d2

dr2 −
k2

1− c2 −

√
cosh2 ρ− c2√γm2

θφ

1− c2

 gθθ − 2k
√

cosh2 ρ− c2√γs
1− c2 gφθ = −δ(r − r

′)√
1− c2

,

(C.31) d2

dr2 −
k2

1− c2 −

√
cosh2 ρ− c2√γm2

θφ

1− c2

 gφθ +
2k
√

cosh2 ρ− c2√γs
1− c2 gθθ = 0, (C.32)

where cosh ρ is to be replaced by cn
(
ir| 1

1−c2
)
.
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Now consider expanding gθθ and gφθ in c2. Because s = O(c2), it follows that gφθ = O(c2)
and the term containing gφθ in (C.31) is O(c4) and can therefore be ignored when we are
interested in Wθθ and Wφθ to linear order in c2. Thus, to linear order, gθθ is effectively
decoupled from gφθ, and (C.31) reduces to the same form as (4.6) except with m2

yy replaced
by m2

θφ. We will therefore first determine Wθθ to linear order in c2 using the same approach
as with Wyy. We will then return to Wφθ, the details of whose analysis are slightly different.

To linear order in c2, it is valid to write

gθθ(r, r′; k) = aθθ(k)(gRθθ(r; k)gLθθ(r′; k)θ(r − r′) + gLθθ(r; k)gRθθ(r′; k)θ(r′ − r)) (C.33)

where aθθ(k) ≡ − 1√
1−c2

(
2dg

R
θθ(r;k)
dr gRθθ(−r; k)

)−1
. Here gRθθ satisfies

 d2

dr2 −
k2

1− c2 −

√
cosh2 ρ− c2√γm2

θφ

1− c2

∣∣∣∣
cosh ρ→cn

(
ir| 1

1−c2

)
 gRθθ(r; k) = 0 (C.34)

and obeys the boundary condition gRθθ(rm) = 0, and by symmetry gLθθ(r; k) = gRθθ(−r; k).
Next, writing gRθθ(r; k) = gRθθ,0(r; k) + c2gRθθ,1(r; k) + . . . and expanding (C.34) to linear order
in c2 yields the two differential equations solved by gRθθ,0(r; k) and gRθθ,1(r; k):(

d2

dr2 − k
2
)
gRθθ,0 = 0,

(
d2

dr2 − k
2
)
gRθθ,1 = (k2 − cos 4r)gRθθ,0. (C.35)

Here, we used (C.24) and (3.17). Furthermore, expanding gRθθ(rm) = 0 to linear order in c2

yields the following boundary conditions for gRθθ,0 and gRθθ,1, which are the same as in (C.3):

g1
θθ,0

(
π

2 ; k
)

= 0, gRθθ,1

(
π

2 ; k
)
− π

8
dgRθθ,0
dr

∣∣∣∣
r=π

2 ;k
= 0. (C.36)

The solutions to these differential equations and boundary conditions are:

gRθθ,0(r; k) = 2 sinh
(
k

(
π

2 − r
))

(C.37)

gRθθ,1(r; k) = 1
8(4 + k2)

[
2k cosh

(
k

(
π

2 − r
))(

(π − 4r)(4 + k2) + sin 4r
)

(C.38)

− 8 sin2 2r sinh
(
k

(
π

2 − r
))]

Given these expressions, the boundary limit of gRθθ simplifies to:

lim
ρ→∞

eρgRθθ(r; k) = r̄m
dgRθθ
dr

∣∣∣∣
rm

= 4k − 2k
4 + k2 c

2 + . . . . (C.39)

Furthermore, (4.8) yields the normalization

aθθ(k) = 1
4k sinh πk + c2

16

[ 2
k(4 + k2) sinh πk −

π cosh πk
sinh2 πk

]
+ . . . . (C.40)
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As with ayy(k) in (C.7), the poles of aθθ(k) in the upper half-plane are at kn = ni for
n = 1, 2, 3, . . . and are of degree 1 at order c0 but of order 1 or 2 at order c2. Consequently,
in order to apply (4.15) to determine Wθθ, we need to pull the factor

eik|τ |aθθ(k)
(

lim
ρ→∞

eρgRθθ

)2
= eik|τ |

[
4k

sinh πk − c
2
(

2k
(4 + k2) sinh πk + πk2 cosh πk

sinh2 πk

)
+ . . .

]
,

(C.41)

back inside the contour integral. Evaluating the contour integral around the pole at kn
amounts to computing the residues of (C.41). At order c0, we find

2πiRes
k=ni

[
eik|τ |aθθ(k)

(
lim
ρ→∞

eρgRθθ

)2∣∣∣∣
c0

]
= 8(−1)n+1ne−n|τ | (C.42)

and at order c2:

2πiRes
k=2i

[
eik|τ |aθθ(k)

(
lim
ρ→∞

eρgRθθ

)2∣∣∣∣
c2

]
= 3

2 (5− 4|τ |) e−2|τ | (C.43)

2πiRes
k=ni

[
eik|τ |aθθ(k)

(
lim
ρ→∞

eρgRθθ

)2∣∣∣∣
c2

]
= 2(−1)n+1

[ 2n
n2 − 4 − 2n+ n2|τ |

]
e−n|τ |. (C.44)

We need to treat the residue at k = 2i separately from the other residues.
Finally we write Wθθ(t1, t2) = Wθθ,0(t1, t2) + c2Wθθ,1(t1, t2) + . . . and apply (4.15) at

each order. The c0 result is

Wθθ,0(t1, t2) = Wyy,0(t1, t2), (C.45)

(see (C.13)) and the c2 result is

Wθθ,1(t1, t2) = g

2π
1
t212

χ2

|1− χ|

[
sgn(1− χ)

(
−15

4 + 3|τ |
)
e−2|τ |

+
∞∑

n=1,n 6=2
sgn(1− χ)n+1

( 2n
n2 − 4 − 2n+ n2|τ |

)
e−n|τ |

]
. (C.46)

The series can be summed explicitly for all χ ∈ R.
The last step is to compute gφθ to order c2. Since there is no c0 term, we can write

gφθ = gφθ,1c
2 + . . .. The linear term satisfies the boundary condition gφθ,1(±π

2 , r
′; k) = 0

and the equation (
∂2

∂r2 − k
2
)
gφθ,1(r, r′; k) = −k sin2(2r)gθθ,0(r, r′; k). (C.47)

Given that gθθ,0(r, r′; k) = aθθ,0(k)(gRyy,0(r; k)gRyy,0(−r′; k)θ(r − r′) + gRyy,0(r′; k)gRyy,0(−r; k)
θ(r′ − r)) with gRyy,0(r; k) = 2 sinh

(
k
(
π
2 − r

))
and aθθ,0(k) = 1

4k sinhπk , we consider the
ansatz

gφθ,1(r, r′; k) = R(r, r′; k)θ(r − r′) + L(r, r′; k)θ(r′ − r). (C.48)
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It follows that R and L satisfy(
∂2

∂r2−k
2
)
R(r,r′;k) =−csch(πk)sinh

(
k

(
π

2 +r′
))

sin2(2r)sinh
(
k

(
π

2−r
))

, (C.49)(
∂2

∂r2−k
2
)
L(r,r′;k) =−csch(πk)sinh

(
k

(
π

2−r
′
))

sin2(2r)sinh
(
k

(
π

2 +r
))

, (C.50)

and the boundary conditions R(π2 , r′; k) = L(−π
2 , r
′; k) = 0. To ensure that the derivatives of

the step functions do not produce delta functions in (C.47), R and L also satisfy R(r′, r′; k) =
L(r′, r′; k) and ∂rR(r′, r′; k) = ∂rL(r′, r′; k). These conditions uniquely determine R and L.
They are given explicitly by:

R(r,r′;k) =
[

1
2k

(
1− k

2 cos(4r)
4+k2

)
sinh

(
k

(
π

2−r
))

+
(
r− k

2 sin(4r)
4(4+k2)

)
cosh

(
k

(
π

2−r
))

−π2 csch(πk)sinh
(
k

(
π

2 +r
))]sinh

(
k
(
π
2 +r′

))
4k sinhπk +(r↔−r′), (C.51)

L(r,r′;k) =R(r′, r;k). (C.52)

Note that R(r, r′;−k) = −R(r, r′; k), which means gφθ,1(r, r′;−k) = −gφθ,1(r, r′; k). This
reflects the fact that Gφθ(ρ, τ ; ρ′, τ ′) changes sign when τ, τ ′ → −τ,−τ ′, as discussed
below (3.32).

Next, we apply (3.41), which tells us

Wφθ,1(t1, t2) = g

4π
1
t212

χ2

|1− χ|sgn(τ)
∫ ∞
−∞

dkeik|τ | lim
ρ→η1∞
ρ′→η2∞

eη1ρ+η2ρ′gφθ,1(r, r′; k), (C.53)

where η1 = 1 if t3 < t1 < t4 and η1 = −1 otherwise, and analogously for η2. We have used
that gφθ,1 is odd under k → −k to pull out the sign of τ from the exponential.

Thus we need to evaluate the boundary limits of gφθ,1(r, r′; k). We note that when
c = 0, (4.4) reduces to r = arcsec(cosh ρ), whose asymptotic behavior is r ∼ π

2 − 2e−ρ as
ρ→∞ and r ∼ −π

2 +2eρ as ρ→ −∞. Likewise for r′. Thus, given (C.48) and (C.51)–(C.52),
the boundary limits are found to be

lim
ρ→∞
ρ′→−∞

eρ−ρ
′
gφθ,1(r, r′; k) = lim

ρ→−∞
ρ′→∞

eρ
′−ρgφθ,1(r, r′; k) (C.54)

= kπ csch(kπ)2 cosh(kπ)− 4
4 + k2 csch πk

lim
ρ→∞
ρ′→∞

eρ+ρ′gφθ,1(r, r′; k) = lim
ρ→−∞
ρ′→−∞

e−ρ−ρ
′
gφθ,1(r, r′; k) (C.55)

= −kπ csch(kπ)2 + 4
4 + k2 csch πk cosh(kπ)

Note that the order of limits in (C.55) does not matter.
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Finally, we close the contour in (C.53) at infinity in the upper half-plane and deform it
to pick up the residues at the poles at k = ni, n = 1, 2, 3, . . ..

2πiRes
k=2i

[
eik|τ | lim

ρ→η1∞
ρ′→η2∞

eη1ρ+η2ρ′gφθ,1

]
= iη1η2e

−2|τ |
(
−3

2 + 6|τ |
)
, (C.56)

2πiRes
k=ni

[
eik|τ | lim

ρ→η1∞
ρ′→η2∞

eη1ρ+η2ρ′gφθ,1

]
= i(η1η2)n+12e−n|τ |

(
n2

4− n2 + n|τ |
)
. (C.57)

We need to treat the residue at k = 2i separately from the residues at k = ni, n = 1, 3, 4, 5, . . ..
The simple relation between the residues when ρ and ρ′ are sent to opposite boundaries
(i.e., η1 = −η2) and the residues when ρ and ρ′ are sent to the same boundary (i.e., η1 = η2)
results from the fact that (C.54) and (C.55) differ by multiplicative factors of cosh πk and
cosh(nπi) = (−1)n.

Substituting (C.56)–(C.57) into (C.53), we finally find

Wφθ,1(t1, t2) = ig

2π
1
t212

χ2

|1− χ|sgn(τ)
[
sgn(1− χ)

(
−3

4 + 3|τ |
)
e−2|τ | (C.58)

+
∞∑

n=1,n 6=2
sgn(1− χ)n+1

(
n2

4− n2 + n|τ |
)
e−n|τ |

]
.

The series can be summed explicitly for all χ ∈ R.
To summarize, starting from the quadratic Lagrangian for the θ and φ fluctuation

modes, given in (3.26), we were able to determine the boundary-to-boundary propagators
for the θ and φ modes to linear order in c2. When these propagators are combined with the
classical vertex operators given in (3.47), the dictionary in (C.25) and (C.26) determines
the defect correlators in (2.20)–(2.21) to be:

〈Z(t1)Z̄(t2)ZJ(t3)Z̄J(t4)〉
〈ZJ(t3)Z̄J(t4)〉

= 4g2c2

t212

χ2

(1− χ)2 + 2
[
Wθθ,0(t1, t2)

+ (Wθθ,1(t1, t2) + iWφθ,1(t1, t2))c2 +O(c4)
]

+O(g0), (C.59)

〈Z̄(t1)Z(t2)ZJ(t3)Z̄J(t4)〉
〈ZJ(t3)Z̄J(t4)〉

= 4g2c2

t212
χ2 + 2

[
Wθθ,0(t1, t2)

+ (Wθθ,1(t1, t2)− iWφθ,1(t1, t2))c2 +O(c4)
]

+O(g0), (C.60)

where Wθθ,0, Wθθ,1 and Wφθ,1 are given in (C.45)–(C.46) and (C.58). When the series are
summed explicitly and the defect correlators are translated to GZZ̄ and GZ̄Z using (2.20)–
(2.21), we find perfect agreement with (5.19)–(5.21).

We were also able to extend the perturbative analysis in this section to order c4, but
with considerably more effort. We spare the reader the details, but the results for Wyy,2,
Wθθ,2 and Wφθ,2, were again in perfect agreement with the perturbative results using the
much simpler approach discussed in section 5.2.
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D Four-point functions and OPE data at finite charge

In this appendix, we study the four-point correlators in (2.13)–(2.14) and the OPE data that
can be extracted from them in the planar, strongly coupled regime (N →∞, g � 1) with
J finite. The “finite charge” results are valid in the parameter range 1 ∼ J � g whereas
the large charge results discussed in the body of the paper are valid in the parameter range
1� J ∼ g. When 1� J � g, the two regimes overlap and can be compared.

D.1 Finite charge four-point functions

The correlation functions of light scalar and displacement operators in the strongly coupled
regime of the Wilson line dCFT can be computed holographically by studying the fluctuations
about the AdS2 classical string dual to the Wilson line. The fluctuations are weakly coupled
and governed by a tower of interactions in the AdS2 bulk suppressed by 1/g [19]. At leading
order the defect operators behave like generalized free fields, and the Witten diagrams
involve only Wick contractions of the defect operators using the AdS2 boundary-to-boundary
propagators. At the first sub-leading order, the correlators receive contributions from the
one-loop self-energy corrections to the boundary-to-boundary propagators and from four-
point contact diagrams. The self energy corrections can be deduced indirectly using results
from localization [14] while the contact diagrams can be evaluated by integrating over
the position in the bulk of the appropriate interaction vertices connecting four boundary-
to-bulk propagators [19]. The four-point functions of four elementary (i.e., J = 1, non-
composite) scalars, four elementary displacement operators, and two elementary scalars and
two elementary displacement operators were discussed in [19]. The two- and three-point
functions of higher finite charge composite scalars was discussed in [14]. The present
discussion is a straightforward adaptation of those analyses.

The Witten diagrams contributing to the correlators in (2.13)–(2.14) to subleading
order in 1/g consist of four “building blocks.” The first two are the “dressed” (i.e., one-loop
corrected) boundary-to-boundary propagators that connect two elementary scalars or two
elementary displacement operators. These are given in (2.17). We will write them using
the abbreviated notation

(12) ≡ 〈ε1 · Φ(t1)ε2 · Φ(t2)〉 = 2g
π

ε1 · ε2
t212

(
1− 3

8πg +O(1/g2)
)
, (D.1)

[12] ≡ 〈µ1 · D(t1)µ2 · D(t2)〉 = 12g
π

µ1 · µ2
t412

(
1− 3

8πg +O(1/g2)
)
, (D.2)

and represent them graphically using solid and dashed curves, respectively, as illustrated in
figure 15(a) and figure 15(b).

The third and fourth building blocks are the contact diagram with four external legs
connected to elementary scalars and the contact diagram with two external legs connected
to elementary scalars and two legs connected to elementary displacement operators. Due
to the interaction vertex in the bulk, these are suppressed by 1/g. We write the contact
diagrams using the abbreviated notation,

(1234) ≡ (12)(34)
4πg Λ(χ, ξ, ζ), [12|34) ≡ [12](34)

4πg GDΦ(χ), (D.3)
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(a) (12) (b) [12]

(c) (1234) (d) [12|34)

Figure 15. Four elementary Witten diagrams that we use to compute the two-point function
with two charge J scalars as well as the four-point functions with two charge J scalars and two
unit scalars or two unit displacement operators. (a) Scalar boundary-to-boundary propagator
with one-loop correction (not depicted). (b) Displacement boundary-to-boundary propagator with
one-loop correction (not depicted). (c) Four-point contact diagram with four legs incident on scalars.
(d) Four-point contact diagram with two legs incident on scalars and two legs incident on displacment
operators.

and depict them graphically as in figure 15(c) and figure 15(d). Here,

Λ(χ,ξ,ζ)≡
[
G

(1)
S (χ)− 2

5G
(1)
T (χ)+ξ

(
G

(1)
T (χ)+G(1)

A (χ)
)

+ζ
(
G

(1)
T (χ)−G(1)

A (χ)
)]
, (D.4)

and the functions G(1)
S (χ), G(1)

T (χ) and G(1)
A (χ) are given explicitly in [19]. Likewise, GDΦ(χ)

also follows from the results therein and is given explicitly by

GDΦ(χ) ≡ −4
(

1 +
( 1
χ
− 1

2

)
log |1− χ|

)
. (D.5)

Because (ε3 · Φ(t3))J and (ε4 · Φ(t4))J are composite operators, there will be also be
diagrams in which one pair of legs of the scalar four-point contact diagram are incident on
the same point, or two pairs of legs are incident on two points.50 When ε4 = ε1 and t4 → t1,
then ξ = 1, ζ = 0, χ→ 1, and therefore Λ→ −3. Thus, the scalar contact diagrams with
one or two pairs of legs coincident simplify to

(1123) = − 3
4πg (12)(13), (1122) = − 3

4πg (12)2. (D.6)

50By contrast, there are no contributions from self-contracting boundary-to-boundary propagators because
ε2i = µ2

i = 0.
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Figure 16. The Witten diagrams contributing to the two-point function 〈(ε3 · Φ(t3))J(ε4 · Φ(t4))J〉
to first subleading order in 1/g have two distinct topologies, corresponding to the two terms in (D.7).

Now we have everything necessary to determine the four-point correlators in (2.13)–
(2.14), as well as the “heavy-heavy” two-point function they are normalized by, to subleading
order. Let’s start with the heavy-heavy two-point function. The contributing Witten
diagrams belong to one of two classes distinguished by their topologies, which are depicted
in figure 16. Keeping track of the combinatorial factors, we find

〈(ε3 · Φ(t3))J(ε4 · Φ(t4))J〉 = J !(34)J +
(
J

2

)2

(J − 2)!(3344)(34)J−2 (D.7)

=
(2g
π

ε3 · ε4
t234

)J
J !
(

1− 3J(J + 1)
16πg +O(1/g2)

)
. (D.8)

Second, the Witten diagrams contributing to the four-point function in (2.13) belong
to one of six classes distinguished by their topologies, which are depicted in figure 17.
Permuting the two light operators and the two heavy operators, and keeping track of the
appropriate combinatorial factors, we find

〈ε1 ·Φ(t1)ε2 ·Φ(t2)(ε3 ·Φ(t3))J(ε4 ·Φ(t4))J〉= J ! [(12)(34)+J(13)(24)+J(14)(23)](34)J−1

+
(
J

2

)2

(J−2)! [(12)(34)+(J−2)(13)(24)+(J−2)(14)(23)](3344)(34)J−3

+
(
J

2

)
J ! [(1344)(23)+(2344)(13)+(1334)(24)+(2334)(14)] (34)J−2

+J !J(1234)(34)J−1. (D.9)

The first line above captures the contributions from the first two topologies in figure 17;
the second line captures the contributions from the third and fourth topologies; the third
line captures the contributions from the fifth topology; and the last line captures the
contribution from the sixth topology.

Given the explicit expressions for the propagators and the contact diagram in (D.1)
and (D.3), the expression in (D.9) simplifies to

〈ε1 ·Φ(t1)ε2 ·Φ(t2)(ε3 ·Φ(t3))J(ε4 ·Φ(t4))J〉= J !
(2g
π

)J+1 ε1 ·ε2
x2

12

(ε3 ·ε4)J
x2J

34

[
1− 3(J2+J+2)

16πg

+J
(
ξχ2+ ζχ2

(1−χ)2

)(
1− 3J(J+3)

16πg

)
+ J

4πgΛ+O(1/g2)
]
. (D.10)
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Figure 17. The Witten diagrams contributing to the four-point function 〈ε1 · Φ(t1)ε2 · Φ(t2)(ε3 ·
Φ(t3))J(ε4 · Φ(t4))J〉 to first subleading order in 1/g have six distinct topologies. There are eleven
topologies (= 1 + 2 + 1 + 2 + 4 + 1) if we distinguish between configurations with the light and heavy
operators permuted. These correspond to the eleven terms in (D.9).

Thus, given (D.8), the normalized four-point function is

〈ε1 · Φ(t1) ε2 · Φ(t2)(ε3 · Φ(t3))J(ε4 · Φ(t4))J〉
2g
π
ε1·ε2
t212
〈(ε3 · Φ(t3))J(ε4 · Φ(t4))J〉

(D.11)

= 1− 3
8πg + J

(
ξχ2 + ζχ2

(1− χ)2

)(
1− 3J

8πg

)
+ J

4πgΛ(ξ, ζ, χ) +O(1/g2),

and the three conformally invariant functions reduce to

G1(χ) = 1− 3
8πg + J

4πg

(
G

(1)
S −

2
5G

(1)
T

)
+O(1/g2), (D.12)

G2(χ) = Jχ2

(1− χ)2

(
1− 3J

8πg

)
+ J

4πg (G(1)
T −G

(1)
A ) +O(1/g2), (D.13)

G3(χ) = Jχ2
(

1− 3J
8πg

)
+ J

4πg (G(1)
T +G

(1)
A ) +O(1/g2). (D.14)

We can thus identify the first few terms in the double expansion of the conformal functions
in 1/g and J = J/g. Using (5.15), we can also write the result as an expansion in 1/g and
c2. We find:

G1(χ) =
(

1+ J4π

(
G

(1)
S −

2
5G

(1)
T

)
+O(J 2)

)
+ 1
g

(
− 3

8π +O(J )
)

+O(1/g2)

=
(

1+ c2

4

(
G

(1)
S −

2
5G

(1)
T

)
+O(c4)

)
+ 1
g

(
− 3

8π +O(c2)
)

+O(1/g2) (D.15)

G2(χ) = gχ2

(1−χ)2

(
J − 3J 2

8π +O(J 3)
)

+
( J

4π
(
G

(1)
T −G

(1)
A

)
+J 2

)
+O(1/g)

= gπχ2

(1−χ)2

(
c2 +0c4 +O(c6)

)
+
(
c2

4
(
G

(1)
T −G

(1)
A

)
+O(c4)

)
+O(1/g). (D.16)

– 78 –



J
H
E
P
0
8
(
2
0
2
2
)
0
1
1

Figure 18. The Witten diagrams contributing to the four-point function 〈µ1 · D(t1)µ2 · D(t2)(ε3 ·
Φ(t3))J (ε4 · Φ(t4))J〉 to first subleading order in 1/g have three distinct topologies corresponding to
the three terms in (D.18).

G3(χ) = gχ2
(
J − 3J 2

8π +O(J 3)
)

+
( J

4π
(
G

(1)
T +G

(1)
A

)
+O(J 2) . . .

)
+O(1/g)

= gπχ2
(
c2 +0c4 +O(c6)

)
+
(
c2

4
(
G

(1)
T +G

(1)
A

)
+O(c4)

)
+O(1/g) (D.17)

Given the explicit forms of G(1)
S (χ), G(1)

T (χ) and G
(1)
A (χ) from [19], we easily check

that (D.15)–(D.17) precisely match the (5.19)–(5.21) in the overlapping terms.
Finally, the Witten diagrams contributing to the four-point function in (2.14) belong

to one of three classes distinguished by their topologies, which are depicted in figure 18.
Explicitly, we have

〈µ1 · D(t1)µ2 · D(t2)(ε3 · Φ(t3))J(ε4 · Φ(t4))J〉

= J ![12](34)J +
(
J

2

)2

(J − 2)![12](3344)(34)J−2 + J !J [12|34)(34)J−1 (D.18)

= 6J !
(2g
π

)J+1 µ1 · µ2
t412

(ε3 · ε4)J
t2J34

[
1− 3(J2 + J + 2)

16πg + J

4πgGDΦ(χ) + . . .

]
. (D.19)

The conformal function G4(χ) is therefore:

G4(χ) = 〈µ1 ·D(t1)µ2 ·D(t2)(ε3 ·Φ(t3))J(ε4 ·Φ(t4))J〉
12g
π

µ1·µ2
t412

(ε3 ·Φ(t3))J(ε4 ·Φ(t4))J
= 1− 3

4πg+ J

4πgGDΦ(χ)+O(1/g2),

(D.20)

which can also be written as an expansion in 1/g and J or 1/g and c2:

G4(χ) =
(

1 + J4πGDΦ(χ) +O(J 2)
)

+ 1
g

(
− 3

4π +O(J )
)

+O(1/g2)

=
(

1 + c2

4 GDΦ(χ) +O(c4)
)

+ 1
g

(
− 3

4π +O(c2)
)

+O(1/g2). (D.21)

Given (D.5), this precisely matches (5.22) in the overlapping terms.

D.2 Finite charge OPE data

Next we extract OPE data from the finite charge four-point functions. Because the large
charge and finite charge four-point functions agree in the regime of overlapping validity, the
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corresponding OPE data must necessarily agree as well. Nonetheless, the procedure we use
in the present section to extract the finite charge OPE data is conceptually different from
what we used in section 5, and therefore provides additional insight and serves as a nice
check of the large charge results.

Like in section 5, we focus on the four-point function 〈ZZJ Z̄Z̄J〉 in the 12→ 34 channel.
(For brevity, we will not also consider 〈ZJZZ̄Z̄J〉). From (5.10) combined with (D.12)
and (D.13), we have

〈Z(t1)ZJ(t2)Z̄(t3)Z̄J(t4)〉= NZZ̄NZJ Z̄J
tJ+1
21 tJ+1

43

(
t42
t31

)1−J
χJ+1

[
1+ J

(1−χ)2 + J

4πg

(
− 3(J−1)

2(1−χ)2

+
(
G

(1)
S + 3

5G
(1)
T −G

(1)
A

)∣∣∣∣
χ−1

)
+O(1/g2)

]
. (D.22)

We can again analyze this correlator using the conformal block expansion given in (5.1).
With J finite, we work perturbatively in 1/g instead of in 1/J .

Constructing primaries out of generalized free fields. In the strong coupling limit,
g → ∞, the Wilson line dCFT reduces to a generalized free field theory. Since Z and Z̄
behave like generalized free fields with unit conformal dimension, we can explicitly construct
the conformal primaries appearing in the OPEs of Z and ZJ (and likewise in the OPE
of Z̄ and Z̄J) using the conformal algebra. Even though we can deduce OPE data using
the conformal block expansion without needing to know the precise form of the exchanged
operators, constructing at least the first few operators explicitly makes the analysis more
transparent and illustrates some of the assumptions we made about the operators appearing
in the conformal block expansions in section 5.

In 1d, the conformal algebra is given by [K,P ] = 2D, [D,P ] = P , [D,K] = −K. Since
Z is a primary of dimension 1, it satisfiesDZ = Z andKZ = 0, and its descendants are PmZ
for m = 1, 2, 3, . . .. We can construct additional primaries by taking linear combinations
of the different ways that m copies of P can act on J + 1 copies of Z.51 If J is arbitrarily
large, the number of different ways is equal to the number of ways, denoted pm, to partition
the positive integer m into a sum of positive integers. The counting of partitions has a
nice generating function: ∑∞m=0 pmq

m = ∏∞
m=1

1
1−qm = 1 + q + 2q2 + 3q3 + 5q4 + 7q5 + . . ..

Since each operator can be written as a linear combination of primaries and descendants, it
follows that the pm-dimensional vector space spanned by the operators constructed out of m
copies of P acting on J + 1 copies of Z has a (pm − pm−1)−dimensional subspace spanned
by primaries and a pm−1-dimensional subspace spanned by descendants of the lower-m
primaries. The subspace of primaries is equivalently the space of solutions to KO = 0 at a
given m.

For the sake of illustration, let us construct the first few primaries. We will denote
them by [ZJ+1]0m,i where m denotes the number of copies of P , i is a label to distinguish
between degenerate primaries, if the space of solutions to KO = 0 has dimension greater

51The construction (and counting) of primaries out of more than two copies of generalized free fields was
discussed in, for instance, appendix A of [97].
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than one, and the superscript 0 indicates that these are the primaries in the generalized free
field theory. Using DPmZ = (∆ +m)PmZ and KPmZ = m(m+ 2∆− 1)Pm−1Z, which
follow from the conformal algebra, one can show that the following are conformal primaries

[ZJ+1]0 = ZJ+1, (D.23)

[ZJ+1]2 = ZJP 2Z − 3
2Z

J−1(PZ)2, (D.24)

[ZJ+1]3 = ZJP 3Z − 6ZJ−1(P 2Z)(PZ) + 6ZJ−2(PZ)3 (D.25)
[ZJ+1]4,1 = ZJP 4Z − 10ZJ−1(P 3Z)(PZ) + 10ZJ−1(P 2Z)2 (D.26)

[ZJ+1]4,2 = ZJ−1(P 2Z)2 − 3ZJ−2(P 2Z)(PZ)2 + 9
4Z

J−3(PZ)4. (D.27)

In particular, they satisfy K[ZJ+1]m,i = 0 and D[ZJ+1]m,i = J + 1 +m. These have not
been normalized in any particular way and [ZJ+1]4,1 and [ZJ+1]4,2 form an arbitrary basis
for the 2-dimensional space of m = 4 primaries.

If we were to continue the construction for larger m, we would find that the primaries
with m > 4 obey the following basic patterns:

• There is one conformal primary constructed out of J + 1 copies of Z (likewise Z̄) at
m = 0, m = 2, and m = 3. There is more than one conformal primary constructed
out of J + 1 copies of Z (likewise Z̄) at each m ≥ 4. There is no conformal primary
at m = 1.

• The dimensions of the primaries are ∆[ZJ+1]m,i = ∆[Z̄J+1]m,i = J + 1 +m. Moreover,
under parity [ZJ+1]m,i and [Z̄J+1]m,i are odd if m is odd and even if m is even. This
follows because PO = −i∂O.

• We may choose the basis of primaries constructed out of Z̄ so that they satisfy
[ZJ+1]†m,i = [Z̄J+1]m,i. This follows from [P,Z]† = −[P, Z̄]. Furthermore, apply-
ing a Gram-Schmidt-like procedure, using 〈Z(t1)Z̄(t2)〉 = 4g

π
1
t221

and Wick contrac-
tions to evaluate the inner product 〈[ZJ+1]m,i[Z̄J+1]m′,i′〉, we can construct an or-
thonormal basis that satisfies 〈[ZJ+1]m,i[ZJ+1]m′,i′〉 = 〈[Z̄J+1]m,i[Z̄J+1]m′,i′〉 = 0 and
〈[ZJ+1]m,i[Z̄J+1]m′,i′〉 = δmm′δii′ .

Extracting OPE data. Let us now return to the four-point function in (D.22). We will
denote the conformal primaries contributing to the conformal block expansion by [ZJ+1]m,i,
which we have labelled based on the property that they reduce to the generalized free-field
primaries at strong coupling: [ZJ+1]m,i → [ZJ+1]0m,i as g →∞. In analogy with degenerate
perturbation theory in quantum mechanics, this means choosing a basis [ZJ+1]0m,i for each
degenerate subspace with m ≥ 4 that diagonalizes the interaction.

We expand the conformal dimensions and OPE coefficients of the primaries in 1/g:

∆m,i ≡ ∆[ZJ+1]m,i = J + 1 +m+ γm,i
4πg +O(1/g2), (D.28)

am,i ≡
CZZJ [ZJ+1]m,iCZ̄Z̄J [Z̄J+1]m,i
NZZ̄NZJ Z̄JN[ZJ+1]m,i[Z̄J+1]m,i

= a0
m,i +

a1
m,i

4πg +O(1/g2). (D.29)
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Invoking (5.1), we can write the conformal block expansion of (D.22) and expand in 1/g:

〈Z(t1)ZJ(t2)Z̄(t3)Z̄J(t4)〉 = NZZ̄NZJ Z̄J
tJ+1
21 tJ+1

43

(
t42
t31

)1−J ∞∑
m=0

∑
i≥1

am,iχ
∆m,iF∆m,i,J−1(χ)

= NZZ̄NZJ Z̄J
tJ+1
21 tJ+1

43

(
t42
t31

)1−J ∞∑
m=0

∑
i≥1

[
a0
m,iχ

J+1+mFJ+1+m,J−1(χ) (D.30)

+ χJ+1+m

4πg
(
a0
m,iγm,i logχ+ a1

m,i + a0
m,iγm,i∂m

)
FJ+1+m,J−1(χ) +O(1/g2)

]
,

where we introduced Fh,a(χ) ≡ 2F1(h+ a, h− a, 2h, χ) for shorthand.
By comparing the expansions in (D.30) and (D.22) and disentangling the different

conformal blocks, we can extract information about a0
m,i, γm,i and a1

m,i. Because [ZJ+1]m,i
for each i ≥ 1 have the same conformal dimension at leading order, the conformal block
expansion does not distinguish between the different operators, and the OPE data that we
can extract are the “operator-averaged” OPE coefficients and anomalous dimensions:

ā0
m ≡

∑
i≥1

a0
m,i, ā1

m ≡
∑
i≥1

a1
m,i, γ̄m ≡

1
ā0
m

∑
i≥1

a0
m,iγm,i. (D.31)

For simplicity, we will focus on ā0
m and γ̄m. To disentangle the conformal blocks, it is useful

to note that they satisfy the following orthogonality relation:∮
dz

2πi
1
z2 z

∆+mF∆+m,a(z)z1−∆−m′F1−∆−m′,a(z) = δmm′ . (D.32)

This holds for any a ∈ R, ∆ = 1, 2, 3, . . . and n, n′ = 0, 1, 2, . . .. We also note∮
dz

2πi
1
z2 z

−J−mF−J−m,J−1(z)zJ+1 = (−1)mΓ(2J+m)Γ(m+2)Γ(m+2J+1)
Γ(2J)Γ(m+1)Γ(2m+2J+1) , (D.33)∮

dz

2πi
1
z2 z

−J−mF−J−m,J−1(z) zJ+1

(1−z)2 = Γ(m+2)2Γ(m+2J+1)
Γ(m+1)Γ(2m+2J+1) . (D.34)

Finally, comparing (D.30) with (D.22) at leading order, we have
∞∑
m=0

ā0
mχ

J+1+mFJ+1+m,J−1(χ) = χJ+1
(

1 + J

(1− χ)2

)
. (D.35)

Applying the orthogonality condition (D.32) and (D.33)–(D.34) yields

ā0
m = (JΓ(2 +m)Γ(2J) + (−1)mΓ (2J +m)) (m+ 1)Γ (m+ 2J + 1)

Γ(2J)Γ(2m+ 2J + 1) . (D.36)

Note that the r.h.s. evaluates to zero m = 1, reflecting the fact that there is no primary
with m = 1, as per the discussion around (D.23)–(D.27).

Next, if compare the term at order 1/g that is proportional to logχ, we have
∞∑
m=0

ā0
mγ̄mχ

J+1+mFJ+1+m,J−1(χ) = JχJ+1

4πg

[
G

(1)
S (χ−1) + 3

5G
(1)
T (χ−1)−G(1)

A (χ−1)
]

logχ

(D.37)
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The prefactors of the logχ terms in G(1)
S , G(1)

T andG(1)
A are rational functions that can be read

off the explicit expressions in [19]. Using the orthogonality of the conformal blocks, we find

γ̄m = J

ā0
m

∮
dχ

2πi
1
χ2χ

−J−mF−J−m,J−1(χ)χJ+1 2χ2(3 + χ(χ− 3))
(χ− 1)3 . (D.38)

By evaluating the above contour integral analytically for a range of J and m, we deduce
the following simple expression for γ̄m:

γ̄0 = 0, γ̄m = −m(m+ 1)
2 − Jm, for m = 2, 3, . . . . (D.39)

Finally, we can compare the finite charge OPE data with the large charge OPE data.
First, we identify the operators we denoted [ZZJ ]n in section 5.1 with the operators [ZJ+1]m
we defined in this section such that n = 0 corresponds to m = 0, and n ≥ 1 corresponds
to m = n+ 1. Then, expanding the finite charge OPE coefficients in 1/J , we find for the
m = 0 and m ≥ 2 operators:

ā0 = J + 1 +O(1/g) = g
(
J +O(J 2)

)
+ (1 +O(J )) +O(1/g). (D.40)

ām = [(−1)m(m+ 1) +O(1/J)] +O(1/g). (D.41)

Identifying m = n+ 1 for n ≥ 1, we see that these expressions match (5.24)–(5.25) in the
overlapping terms.

We can similarly expand the conformal dimensions in 1/g and 1/J , we find for the
m = 0 and m ≥ 2 operators:

∆0 = J+1+O(1/g2) (D.42)

= g
(
J +0J 2+O(J 3)

)
+(1+0J +O(J 2))+1/g(0+O(J ))+O(1/g2)

∆n = J+1+m− Jm4πg−
m(m+1)

8πg +O(1/g2) (D.43)

= g
(
J +0J 2+O(J 3)

)
+(m+1−mJ4π +O(J 2))+ 1

g

(
−m(m+1)

8π +O(J )
)

+O(1/g2),

We find agreement with (5.39), including the absence of an operator with leading dimension
∆ = J + 2. The fact that the agreement in the overlapping terms is exact reinforces the
suggestion in section 5 that operator mixing may not be relevant for the OPE data in the
large charge limit.
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