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ABSTRACT: We continue our study of large charge limits of the defect CFT defined by the
half-BPS Wilson loop in planar A = 4 supersymmetric Yang-Mills theory. In this paper,
we compute 1/J corrections to the correlation function of two heavy insertions of charge .J
and two light insertions, in the double scaling limit where the charge J and the 't Hooft
coupling A are sent to infinity with the ratio J/ VX fixed. Holographically, they correspond
to quantum fluctuations around a classical string solution with large angular momentum,
and can be computed by evaluating Green’s functions on the worldsheet. We derive a
representation of the Green’s functions in terms of a sum over residues in the complexified
Fourier space, and show that it gives rise to the conformal block expansion in the heavy-light
channel. This allows us to extract the scaling dimensions and structure constants for an
infinite tower of non-protected dCFT operators. We also find a close connection between
our results and the semi-classical integrability of the string sigma model. The series of
poles of the Green’s functions in Fourier space corresponds to points on the spectral curve
where the so-called quasi-momentum satisfies a quantization condition, and both the scaling
dimensions and the structure constants in the heavy-light channel take simple forms when
written in terms of the spectral curve. These observations suggest extensions of the results
by Gromov, Schafer-Nameki and Vieira on the semiclassical energy of closed strings, and in
particular hint at the possibility of determining the structure constants directly from the
spectral curve.
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1 Introduction

Wilson loops are fundamental observables in any gauge theory. They provide a natural
basis of gauge-invariant operators, play the role of order parameter for the confinement-
deconfinement transition, and satisfy a set of non-perturbative Schwinger-Dyson equations
called the loop equations [1, 2], which are especially useful in two dimensions' [4, 5].

In the maximally supersymmetric gauge theory in four dimensions known as N = 4
supersymmetric Yang-Mills (SYM) theory, one can define generalizations of the usual Wilson
loop that couple to scalar fields and preserve a fraction of supersymmetry. Of particular
importance among them is the half-BPS Wilson loop, which couples to a single scalar field
and is defined on a circular (or infinite straight line) contour. Thanks to extensive research
in the past few years, it has become clear that the half-BPS Wilson loop provides an ideal
testing ground for various non-perturbative approaches in quantum field theory.

Firstly, the half-BPS Wilson loop preserves a one-dimensional superconformal group
OSp(4*|4) [6-8] and provides a canonical example of a one-dimensional defect conformal
field theory (CFT) [9]. This enables one to study the correlation functions of insertions
on the Wilson loop using both analytical and numerical bootstrap techniques [10-13].
Secondly, there exists a “topological” subsector of this defect CFT (dCFT) in which the
correlation functions become position-independent and can be computed analytically as
nontrivial functions of the 't Hooft coupling A\(= g%,;V) using the method of supersymmetric
localization [14-18]. This led to a rigorous determination of an infinite set of defect conformal
data on the half-BPS Wilson loop, which provided important inputs for the conformal
bootstrap analysis. Thirdly, the half-BPS Wilson loop in the fundamental representation
is holographically dual to an open string minimal surface extending in the AdSs subspace
of AdSs x S°. Using this dual representation, one can study the correlation functions
of insertions at strong coupling via perturbation theory of the string sigma model [19].
Finally, the operator insertions on the half-BPS Wilson loop can be mapped to states in
an integrable open spin chain and their spectrum can in principle be determined exactly
using integrability techniques [8, 20-23]. The three- and higher-point functions also seem
amenable to the integrability machinery [24, 25|, in particular to the so-called hexagon
formalism [26-28], although more work is needed to fully develop the formalism.

The study of the half-BPS Wilson loop also allows one to explore the cross-fertilization
of different techniques. For instance, the correlation functions in the topological subsector
computed from supersymmetric localization in [14, 15] can be recast into an integral of
Q-functions, which are the most basic quantities in the integrability formalism [29]. This
strongly hints at the applicability of integrability to correlation functions and also suggests a
deep connection between integrability and supersymmetric localization. In addition, a recent
study [13] demonstrated that one can determine conformal data to remarkable numerical
precision by combining the numerical conformal bootstrap and the spectral data computed
from integrability. Alternatively, one can use the conformal bootstrap to extend the results
from perturbation theory: this has been demonstrated explicitly in [11], which computed

ntersecting 1/8 BPS Wilson loops in A/ = 4 SYM can also be computed using the loop equation of
two-dimensional Yang-Mills theory as shown in [3].



the three-loop corrections at strong coupling by imposing the crossing symmetry of the
four-point functions. A similar analysis at weak coupling has not been fully developed but
a few direct perturbative results, which would provide starting points of such computations,
are available in the literature [25, 30-33]. Furthermore, the half-BPS Wilson loop provides
a simple example of defect renormalization group flow, which connects the ordinary Wilson
loop without scalar couplings to the half-BPS loop [34]. The defect renormalization group
flow can be studied both at weak and strong couplings [35, 36] (see also [37-39] for related
recent works) and it allows one to explicitly check the monotonicity of the defect entropy,
which was proven recently in [40].

The goal of this paper and its companion [41] is to explore a connection to yet
another non-perturbative approach — the large charge expansion of conformal field theory.
Starting from the seminal works [42, 43], general properties of the large charge sector in
interacting CFTs with global symmetries have been actively explored in recent years using
effective field theory techniques and treating the inverse of the charge as a small expansion
parameter [44-48]. In the Wilson loop defect CFT, the simplest analog of the large charge
sector is given by the correlation functions of two insertions with R-charge J and several
light insertions in the limit

J = o0, A — 00, \%: fixed . (1.1)
In this regime, the role of the large charge effective field theory is played by a probe string
action in AdSs x S°, which becomes classical in the large .J limit. As we demonstrated in
the previous paper [41], the leading large charge answer for the correlation functions can be
computed by evaluating light vertex operators on a nontrivial classical string solution with
large angular momentum, which was constructed in [8, 49, 50]. In special kinematics, we can
compare the results from holography with exact results from supersymmetric localization [14]
and verify the agreement of the two approaches.

In this paper, we consider the leading 1/J corrections to the results computed in the
previous paper. In the double scaling limit (1.1), this is equivalent to studying 1/ VA
corrections, which correspond to quantum fluctuations on the string worldsheet. For
simplicity, we focus on the four-point functions — namely, the correlation functions of
two large charge insertions and two light insertions. We compute them by evaluating the
Green’s functions of light fluctuations around the classical string solution with large angular
momentum, and sending the endpoints of the Green’s functions to the boundaries of the
worldsheet (see figure 1). The results for the Green’s functions are given by integrals over
Fourier modes, which take the following schematic form,

ri k) g=(r's k)
(9%, g%)

Here, G is the Green’s function, r and 7 are the coordinates on the worldsheet, g% and g%

/ oo . , R
G(r,m;r' 7 T?\;r/ dk ek (= 9 ( (1.2)

are solutions to the same second-order differential equation (which turns out to be of the
Lamé type) that satisfy g — 0 (g% — 0) at the left (right) boundary of the worldsheet,
and, finally, <gR, gk > is the Wronskian of the two solutions (which is a position-independent
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Figure 1. A sketch of the setup. In the radial quantization, a single BPS Wilson loop is mapped
to two straight lines in R x S3 (which are connected with each other at future and past infinities)
while the operator insertions with large charges (Z7 and Z7 in the figure) are mapped to a state
defined on S? in the presence of the Wilson lines. This setup is holographically dual to a string
worldsheet anchored at the Wilson lines at the boundary (the blue strip in the figure). To compute
the four-point function, we evaluate the Green’s function (the red segment in the figure) and push the
endpoints to the boundary. This gives the correlation function of two heavy insertions and two light
fluctuations on the worldsheet. The picture shows the case where the endpoints are sent to the same
boundary on the strip, which gives the four-point function in the “heavy-heavy-light-light” ordering.
One may also send the endpoints to opposite boundaries, which gives the “heavy-light-heavy-light”
ordering of the correlation function. See figure 4 for more details.

function of k). The integrand has poles in the upper-half k& plane where the Wronskian
vanishes.? Picking up the residues from those poles, we can rewrite (1.2) as a discrete
sum, which turns out to precisely reproduce the conformal block expansion in the heavy-
light channel. This allows us to read off conformal data of the Wilson loop defect CF'T,
including the conformal dimensions of (infinitely many) non-protected heavy operators and
the “heavy-heavy-light” structure constants.

In addition, the discrete sum representation has a tantalizing connection to integrability,
and in particular to the spectral curve and the so-called quasi-momentum. The spectral
curve is one of the fundamental concepts in the classical integrability of the string sigma
model: it encodes infinitely many conserved charges as its period integrals and it arises as
the semiclassical limit of the Bethe equations, in which the Bethe roots — i.e., the solutions
to the Bethe equations — clump up and form branch cuts [51, 52]. The quasi-momentum
p(z) is a function on the spectral curve that satisfies certain analyticity properties and the
integral of p(z)d(z + 1/x) gives the period integrals on the spectral curve.

2At the positions of the poles, the two solutions ¢™¥ become linearly dependent and there exists a
solution to the differential equation that vanishes at both boundaries of the worldsheet. Physically, such a
solution corresponds to a normalizable excitation on the worldsheet.



As we will show below, each term in the discrete sum corresponds to a point on the
spectral curve satisfying a “quantization condition” p(x,) = nm with n € N, and the defect
CFT data in the heavy-light channel is given by simple functions on the spectral curve. A
similar observation was made by Gromov, Schafer-Nameki and Vieira [53], who developed
an efficient method to compute the semiclassical energy of closed strings by expressing it as
a function on the spectral curve. A novelty of our results is that we find that the structure
constants, not just the energy of the string (or, equivalently, the conformal dimension),
simplify when written in terms of the spectral parameter . This hints at an extension of
the analysis of [53] to the three-point functions and suggests it may be possible to compute
them directly from the spectral curve and classical integrability, without explicit reference
to string solutions.

Outline of the paper. The rest of the paper is organized as follows: in section 2, we
summarize the basics of the four-point functions of insertions on the half-BPS Wilson
loop, including the superconformal Ward identities and the definition of the large charge
limit. We also present the main results for the four point functions that we will derive
in later sections. In section 3, we review the classical string solution describing the large
charge insertions and compute quadratic fluctuations around it. We also explain how to
extract the four-point function of two large charge insertions and two light insertions from
Green’s functions of light fluctuations. In section 4, we derive an integral representation
of Green’s functions and later recast it into a discrete sum by picking up the residues of
the poles in the complexified Fourier space. The discrete sum can be identified with the
conformal block expansion in the heavy-light channel. Using this fact, in section 5 we read
off the conformal dimensions of infinitely many heavy operators and the “heavy-heavy-light”
structure constants. We also study the behavior of the correlators and OPE data at small
and large J/ V. In section 6, we discuss a connection to integrability. We show that each
term in the sum corresponds to a point on the spectral curve satisfying a quantization
condition and derive simple expressions for the conformal dimensions and the structure
constants as functions of the spectral parameter. In section 7, we conclude and discuss
future directions. Several appendices are included to explain technical details.

2 Four-point defect correlators with large charge

2.1 Preliminaries

This paper continues the analysis started in [41]. Let us briefly review the setup. We start
with the (Maldacena-)Wilson operator in N' =4 SYM:

W= %Tr P exp ( f (iAu(@)i + i)Y @, (x) dt) | (2.1)

Here 2#(t) is a closed contour in R* (we work in Euclidean signature), Y/ (¢) is a closed
contour in S° (i.e., 67;YTY/ = 1, where I,J = 1,...,6), and the trace is taken in the
fundamental representation of the gauge group, which we take to be U(N). The gauge field
A, and the scalars @ transform in the adjoint representation of U(/N). We are interested in



the special case of the half-BPS Wilson line, for which the spacetime contour is an infinite
straight line and Y/ is a point in S° (equivalently, one may consider a circular contour after
a conformal transformation). For concreteness, we let z#(t) = (£,0,0,0) and Y/ ®; = &s.
The symmetries preserved by the Wilson line form the one-dimensional superconformal
group, OSp(4*|4) € PSU(2,2|4), which includes 16 supercharges and the bosonic subgroup
SL(2,R) x SO(3) x SO(5). Here, SL(2,R) are the conformal symmetries of the Wilson line,
SO(3) are the spacetime rotations about the line, and SO(5) is the R-symmetry subgroup
that rotates the scalars not coupled to the Wilson line.

The Wilson line defines a one-dimensional defect CFT, in which correlation functions of
defect local operators are obtained by inserting local adjoint operators along the spacetime
contour [8, 10, 11, 13-16, 19, 23, 25, 30, 31, 33, 35, 36]. Explicitly, the correlation function
of n defect operators O;(t;) = O;(x(t;)) inserted in order on the line (i.e., t, < t,y if
m < m') is defined by

1
<01 (t1) .o On(tn» = <NTI‘ [Wn+1,n0n(tn)Wn,n—1 e W2101 (tl)ng] >N:4 SYM’ (2.2)
Wy, = pele Aot do)dt (2.3)
where tg = —00, tp41 = 00. These correlators have the normalization (1) = (W) \—y gy =

1. One may also consider correlation functions involving insertions of local gauge invariant
operators away from the Wilson line, but in this paper we focus on correlators involving
only defect insertions.

The Wilson line defect correlators satisfy the axioms of a 1d CFT (see appendix A
of [54]). For instance, the two- and three-point functions of primary operators O, Oy and
O3 take the form:

(O1(12)03(12)) = Z2260 ., (2.4
21
(O1(t1)02(t2)O3(t3)) = Co.0.0, t1 <ty < t3. (2.5)

- tA1+A2—A3tA2+A3—A1 tA3+A1—A2 ’
21 32 31

Here, t;; = t; — t; is the signed Euclidean distance on the line and No, 0, and Co,0,0, are
the two-point and three-point (i.e., OPE) coefficients. The normalized OPE coefficients are
given by 0010203/(N‘OIOINOQO;NO?,O;)%‘3

In 1d CF'Ts, because operators on a line cannot be moved continuously around each
other without becoming coincident, three-point and higher-point functions generically
depend on the circle-ordering of the operators.* Thus, the OPE coefficient in (2.5) is defined
with a particular order. By circular permutation, it satisfies Co, 0,0, = Co,050, = C030,0,
and likewise No,0, = No,o,. Given that the Wilson line defect CFT is parity invariant and
unitary, there are also relations between configurations of correlators with different circle-
orderings. For instance, assuming the primaries are parity eigenstates, the OPE coefficients

30ne can always rescale the primaries to have unit norm (i.e., Npot = 1). We do not adopt this convention
because some (protected) operators have natural normalizations that contain information about the CFT.

4A discussion of operator ordering and discrete symmetries in a 1d defect CFT — the twist defect in the
3d Ising model — can be found in section 2 of [55].



with different orderings will differ at most by a minus sign: Co,0,0; = (—1)712+PCo. 0,0,
where (—1)P ¢ is the parity of O;. Furthermore, the time-reversal property of the adjoint
map, (O} (tn)...0l(t1)) = (O1(=t1)...On(~t,))", implies C 0.0, = Cototor” The
relations between different configurations of higher-point functions will in general be more
complicated.

There are two classes of “elementary operators” on the Wilson line dCFT that we
will work with. The first class consists of the chiral primaries of the form (e - ®)* where
® = (&q,...,P5) are the scalars that do not couple to the Wilson line, L is a non-negative
integer, and € € C® is a polarization vector satisfying € = 0. This operator transforms in
the rank L symmetric traceless representation of SO(5) and its dimension is protected and
equal to its R-charge, A = L. For the rank-1 symmetric traceless (i.e., the fundamental)
representation, we can also denote the operators by ®,, a =1,...,5. For concreteness, we
will often phrase our discussion in terms of the specific chiral primaries

Z = &4 +i®s, 7 =d, —i®s. (2.6)

The second class of operators we will work with are the displacement operators, D,
a =1,2,3. Displacement operators exist in any dCFT due to the breaking of translational
symmetry [9]. They generate local orthogonal translations of the defect. On the Wilson
line, the displacement operators take the explicit form D, = iFy, + D,Pg, where Fy,
is the gauge field strength and D, is the covariant derivative. They transform in the
fundamental representation of SO(3) and have protected dimension A = 2. We can also use
the alternative notation p - D, where p € C3 is a polarization vector satisfying p? = 0.

Previous results in the large charge sector of the Wilson line dCFT. In [41], we
studied correlators of chiral primaries in the dCFT in which two of the primaries have
“large” R-charge. More precisely, we chose the R-charges of the two distinguished primaries
to be J and took the following sequence of double-scaling limits,

1) N — oo with g and J held fixed

(large charge limit), (2.7)
2) J,g — oo with J held fixed

where g and J are defined by

VA J
et ==, (2.8)

9

<

We call operators whose R-charges scale in proportion with the coupling ¢ in the large
charge limit “heavy” and operators whose quantum numbers do not scale with g “light.”

In [41], we studied the leading large charge behavior of the two-point function (Z TzZ7)

and higher-point functions (Z7Z”7 [, Z% I1; Z%) using AdS/CFT. The two-point function

was found to be
. Nyiza

27t 727 (k) = —242Z7

(2 (t0) 2 10)) = 2

5There are additional constraints on the OPE data from the reflection positivity of the adjoint, which says

(O1(t1) ... On(tn)Of (—tn) ... Ol (—t1)) > 0. For example, for the two-point function, it implies Nty > 0.

Nys g = (2g)? BIEE)-EO) - (29)




where the parameter 2 is related to J by:

% = K(?) — E(c?), (2.10)

and K(c?) and E(c?) are the complete elliptic integrals of the first and second kind. Mean-
while, the higher-point functions take the simplest form consistent with conformal symmetry:

(27(t) 27 (1) T2y 2% () Ty 25 (F5)) (t — tr)*0et (2g0)* et

— — — — - _ 5 _ ,
(27 ()27 (t)) TTE ) ()26 T (8 — 1) 0
(2.11)

where lop = > 1%, ¢; and bt = Z?:l Zj.

We also studied the large charge limit of the two-point function (®”®”) and higher-point
functions (®7®7 [], ®%), where &' = ((t) - ®(t))¢ is a “topological” chiral primary whose
polarization vector €(t) is correlated with its position in such a way that its correlation
functions are independent of position.’ These observables are related to the ones in (2.9)
and (2.11) because, at leading order in large charge, the topological primary truncates
to a sum of powers of Z and Z only — namely, ® ~ (ez(t)Z(t) + e5(t)Z(t))* for an
appropriate choice of €z, €. Correlators of the topological operators can be studied using
localization [14, 15] and, accordingly, in [41] we expressed the topological correlators in
terms of an “emergent” J x J matrix model that we could analyze in the large charge limit
using the usual saddle point techniques. The result for (®/®”7) agreed with (2.9), and the
topological higher-point functions reproduced the appropriate linear combinations of the
correlators in (2.11).

Finally, also using localization, we were able to relate certain topological correlators
to the generalized Bremsstrahlung function, B, whose leading and subleading behavior
in the large charge limit was determined in [50, 56]. As a special case, this allowed us to
determine the following large charge OPE coefficient to subleading order:

C%ZzJZJJrZ - (g7rc2)£ <1 n f(f + 1) 3 1—¢2
4g

szgeNZJZJNZJ+eZJ+z 14

E+C2E(c2) +O(1/g2)>. (2.12)

These OPE coefficients satisfy C,,s 5740 = Cyi 55540 = C5 51,540 and are real, as required
by parity, R-symmetry and time-reversal.

Four-point correlators in the large charge sector. In this work, we continue to
study defect correlators in which two chiral primaries have large R-charge, now extending
the analysis to subleading order in the large charge expansion. We will use AdS/CFT to
compute the following four-point functions:

<€1 . (I)(tl) €9 - @(tg)(ﬁg . ‘I)(tg))‘](64 . (b(t4))‘]> o 27961 * €9
((e3- @(t3))7 (ea - @(ta))”) R

[G1(x) + CGa(x) + £G3(0)]
(2.13)

{p1 - D(t1) p2 - D(t2)(e3 - D(t3))” (ea - D(ta))”) _ 129 1 - po
((e3 - @(t3))7 (€4 - 2(ta))”) Tt

5Tn one possible realization of the topological primaries on the Wilson line, the polarization vector is
e(t) = (0,0,1 —%,2¢,4(1 + t)). It satisfies e(t;) - €(t;) = —2¢3;.

Ga(x)- (2.14)




Here, x is the conformally invariant cross-ratio given by

_ tiatzg 1 tigtoy 1 —x _ tiatos

X = E -
t13tos’ 1—x  tiates’ X t1otss’

(2.15)

and ¢ and ¢ are the SO(5) invariant cross-ratios of the polarization vectors given by

€1 €3 €2 €4 €1 €4 €2 €3

£

¢

(2.16)

61'6263'64’ 61'6263'64‘

The dependence of the conformally invariant functions, G;(x), on N, g and J is left implicit
in our notation. In the large charge expansion (after taking the planar limit), each G;(x) is
written as a series in 1/¢ with a general functional dependence on J at each order. Note
that, since J = J/g, this large charge scaling limit effectively resums an infinite number of
terms in the ordinary perturbation theory in powers of 1/¢g with J finite.

The general form of (2.13) and (2.14) is fixed by the SL(2,R), SO(5) and SO(3)
symmetries. The normalizations are chosen based on the observation that when either
J = 0 or x — 0, then the normalized four-point functions reproduce the two-point functions
of the unit chiral and displacement operators. In particular, x — 0 corresponds to the
OPE limit ¢; — t5 or t3 — t4, which is dominated by the exchange of the identity operator
between the two light and the two heavy operators. The two-point functions are known [57]:

(- t)er - @(t2)) = mal9) 52, (a1 - Dlt)pz - Dt2) = 6n1(g)“1t4“2. (2.17)

12 12
The relative normalization of these correlators is fixed by supersymmetry (because ®; and
D, are in the same supermultiplet of OSp(4*|4)) and the coefficient, n1(g), is known exactly
from localization [14, 57]. In the planar limit, one finds n;(g) = 279%.

we will only need the first two terms in the planar strong coupling limit (N — oo, g > 1):

For our purposes,

nl(g):27rg<1_87?:g+'”>' (2.18)
Matching (2.17) with (2.13)~(2.14), it follows that G1,Gs — 1 — g2 + O(1/¢*) and
G9,G3 — 0, as either x — 0 (for any J), or J — 0.

It will often be convenient to let Z” and Z” serve as the charge J operators in (2.13)
and (2.14), where Z and Z were defined in (2.6). Thus, instead of the general correlators
in (2.13)—(2.14), we will typically work with the four correlators

(i(t1)®;(t2) 27 (t3) 27 (ta)) _ 29 1

(ZfJ(tg)ZJ(tz;))i ST G1(x)dij, (2.19)
ey = 2o e
T a1
<Da(tlzgl}(<tti)>zzi(<iz)>>zj(t4)> - ?#LG“(X)‘S“’ .
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x>1 ZJ
(a) Operators on the line. .. (b) ... and circle

Figure 2. The four operators on the Wilson line can be in one of three distinct configurations.
(a) Using the conformal transformations and parity, we can put Z”(t3), Z7(t4) and the first light
operator O(t1) at any three points on the line satisfying ¢35 < t1 < t4. The three configurations of the
four-point function are then distinguished by the location of the second light operator: t3 < to < t1,
t1 <ty < tyg, and to < t3 or t4 < to. In terms of the cross-ratio, these correspond to 0 < x < 1,
x < 0, and x > 1. (b) The different configurations can also be visualized by compactifying the line
to a circle.

where we define

G77(x) = Gi(x) + Ga(x), Gz7(x) = Gi(x) + Gs(x)- (2.23)

The leading order behavior of (2.20)—(2.21) is included in (2.11). In the present work, we
will determine the first subleading correction of (2.20)—(2.21) and the leading behavior
of (2.19) and (2.22).

We make a few additional comments about (2.19)—(2.22): the scalars ®;, i = 1,2, 3,
which are orthogonal to Z, Z and ®g, possess a residual SO(3) € SO(6) R-symmetry.
Furthermore, the four operators of interest are all parity even and under the adjoint map
satisfy <I>j- = &, DI =D, and (Z%)' = ZL. Finally, it should be emphasized that there
are three inequivalent configurations the four operators on the line can be in, x € (—o0,0),
x € (0,1), and x € (1,00), as illustrated in figure 2. Via analytic continuation from
these configurations, each four-point function defines three generically distinct multi-valued
complex functions with singularities at x = 0, 1, co.

Superconformal Ward identities. Before we commence the analysis of the defect
correlators, we note that they are not independent. Specifically, the functions G;(x) are
related by crossing symmetry and supersymmetry. Firstly, interchanging 1 <> 2 in (2.15)
sends x <> x/(x — 1) and it therefore follows from (2.19)-(2.22) that

G0 =61 (25) . Gl =G (). Gio=6i(2y). e

Thus, one can study the G;(x) on the restricted interval y € (0,2) and extend them to
X € R using (2.24), or study G;(x) on x € R and use (2.24) as a consistency check.

Less trivially, the correlator in (2.13) satisfies superconformal Ward identities, which
may succinctly be written [10]:

0_(8,4+16A) 0A 104
N 6C1 28)(

= (3@ + 2<9X> (2.25)

¢1=x G2=x



Here, A= Gi(x) + 55 C2 Gs(x) + %Gg (x) is the conformally invariant part of the
r.h.s. of (2.13) and ¢; and (2 are an alternative parametrization of the SO(5) invariants
related to & and ¢ by £ = i and ( = % Evaluating (2.25) explicitly, we get the

following two ODEs,

d d dGy
(g —2) Gat0 = (x(x =)= +2) Gal) = —* (2.26)

These equations allow us to solve for Ga(x) and G3(x), and therefore for G, and G5, in
terms of G1(x), after using input from the OPE limit and the localization result (2.12) to
fix the initial conditions. The details of this calculation are given in section 4.2.2.

Since the unit scalar ®; and displacement operator D, are in the same superconformal
multiplet, the correlators in (2.13) and (2.14) are also related by Ward identities [10]. In
principle, one can also determine G4 in terms of G'q, just like G, ; and G ;,. We will instead
study the scalar and displacement correlators independently. This will serve as a test of the
consistency of our analysis via the dual string.

2.2 Summary of explicit results for the four-point functions

We close this preliminary section by collecting our final results for the four-point functions.
They are accessible without a detailed understanding of the derivations in sections 3 and 4.
The conformally invariant functions G;(x) are naturally expressed as series over the
“fluctuation energies” E,,. These are determined by the quantization condition
Ey
dEp(E) = |n|, (2.27)

where the “energy density”, p(E), is

2 K(PA)E? —E(c?)
N s Wi e (2.28)

Note that the integral in (2.27) converges at E' = 1 for both the edge case ¢ = 0, for which
p(FE) = 1, and the general case ¢ € (0,1), for which p(E) ~1/v/E —1as E — 1*. Tt is also
convenient to define the “form factor”, f(FE):

m E(E?+c* - 1)
4K(2)E? —E(?)

F(B) = (2.29)

From the semiclassical analysis of the fluctuations of the dual string in sections 3—4, we
will find that G1(x) and G4(X) are given by

Gi(x > sgn(l — x)"f(Ey)e Erllos =Xl (2.30)
|1 o X| nez
1 E2 —1 En|log|1
Galy) ngn )" (E )nTe— n|log [1—x|| (2.31)
nez

Furthermore, G, ;(x) and G;,(x) are obtained from G1(x) and the Ward identities; the
explicit results are given in (4.54)—(4.57).
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As discussed in detail in section 5, these series representations are directly related to
the conformal block expansion in the heavy-light channel, and the energies E, and form
factors f(E,) encode the anomalous dimensions and OPE coefficients of the exchanged
operators. The expressions (2.30)—(2.31) are valid for all x € R, except at y = 2, where
the G;(x) are smooth but their series representations do not converge (as explained in
section 4.2.1, this is related to the radius of convergence of the OPE). It is interesting to
note that consistency with the limiting behavior G1(x), G4(x) — 1 as x — 0, as required
by the fact that in this limit the OPE of the two light or two heavy operators is dominated
by the exchange of the identity, implies that we should have

_ _ o 1
Zf(En)e En|log(1=x)| X2 =,

X
nez
E72l —1 —En|log(1—x)| X220 1 (232
Zf(En)Te Y

ne”L

We will explicitly check towards the end of section 4.2.1 that these indeed hold, based on
the large n behavior of the energies F,, and form factors f(F,). This is a non-trivial test of
the crossing symmetry of our results.

The four-point functions and the OPE data can also be studied analytically at both
small J (¢ — 07) and large J (¢ — 17), as discussed in section 5.2. The expansion of
the four-point functions in small ¢ involves polylogarithms.” Meanwhile, in the ¢? — 1
(J — 00) limit, the behavior of the four-point functions depends significantly on whether
they are in the “heavy-heavy-light-light” (x < 1) or the “heavy-light-heavy-light” (y > 1)
configurations: the correlators in the latter configuration vanish while the correlators in
the former configuration attain finite limits given by Bessel functions. See figures 12, 13
and 14 for plots of G1(x), G,7(x) and Ga(x) as functions of x for representative values of
2, including the edge cases ¢ = 0 and ¢? = 1.

3 Semiclassical analysis of the dual string

We will compute the next-to-leading order terms in the large charge expansion of the four
point functions in (2.19)—(2.22) by studying the semiclassical fluctuations of the string that
is holographically dual to the Wilson line with Z7 and Z7 inserted. We first sketch the
basic idea in section 3.1, and then fill in the details in sections 3.2-3.3 and section 4.

3.1 Preview

Invoking AdS/CFT, we can schematically write the defect four-point function of two heavy
operators Z”7, Z7 and two light operators, © (= Z, Z, ®;, or D,) and Of, as a string path
integral:

B fD\I/e_s[q’}vé(tg)v%(tzl)v@(tl)vof (t2)

(O(1)01(t2)2” (1) 2” (1) = DTS SENCEY

"The expansion in powers of ¢ is equivalent to an expansion in powers of é, and is therefore related
to the standard 1/g perturbation theory in the string sigma model. The appearance of polylogarithms is
expected for loop diagrams in AdSs, see e.g. [58].
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Here, [ DU denotes integration over the fields of the superstring sigma model (which we
denote collectively by W) whose bosonic components are the coordinates of the string in
AdS;s x S°, S[V] is the string action, and vz, v, vo and vyt are vertex operators dual to
Z, Z, O and Of. In accordance with the “extrapolate dictionary”, we define the vertex
operator vy corresponding to the Wilson line defect operator O by evaluating the dual field
Vo at the point on the boundary of the worldsheet where O is located. Schematically,

.29
o (t) = zligl“' 2’7A

Vo (t,z), (3.2)
where z is a particular bulk coordinate that together with ¢ parametrizes the string worldsheet
(with boundary at z = 0), and A is the dimension of O in the dCFT.

Taking the planar limit in (3.1) picks out the disk topology and taking the large g limit
means the path integral is dominated by its saddle point. Without the two large charge
insertions, the saddle point would be a classical string extending in an AdSo subspace of
AdS5 and sitting at a point on S°. With the two large charge insertions Z” and Z”, the
saddle point solution is a classical string, W, that carries angular momentum J along
the circle in S° dual to Z. This solution extremizes the “total” action, which includes the

contribution of the vertex operators:
Stot 0] = S[W] — Jlog (v2(ts)v5(t4) (3.3)

The string tension is 2g, so the two terms are the same order in the large charge limit.
We reviewed the classical string dual to the Wilson loop with Z7 and Z7 in [41], which
was discussed previously in [8, 49, 50]. We computed the action and the vertex operators
dual to Z and Z on the classical solution, which determined the leading large charge behavior
of the two-point and higher-point functions in (2.9) and (2.11). In this work, we go beyond
the leading order and therefore need to take into account the fluctuations about the classical
string. Letting W = W 4+ W, we expand Siot to quadratic order in the fluctuation modes:

Stot[ Vel + 6] = Syot[U ]+152St°t
tot [ * cl — Ptot[*cl 2 5UsW -

SUSW +0(577). (3.4)

=55[67]
We will see in section 3.2 that there are four distinct bosonic fluctuation modes, correspond-
ing to the four types of defect operators on the Wilson line appearing in (2.19)—(2.22). We
will not study the fermionic modes.
From (3.1), it follows that the four-point function normalized by the large charge
two-point function is given by
(O(t1) O (t2) 27 (t3) 27 (t4))
(Z7(t3) 27 (1))

= vo(t1)vot (t2)|\1101 + Wooi(t1, t2) +0(g"), (3.5)

fluctuation

classical
where we define the boundary-to-boundary propagator®

. 2qg 2
Woor (t, ) = 2A —1)2 lim =% 20.G 01 (1, 213 t2, 20) (3.6)
Z1~)0+ ARED)
20—0T1

8The factor of (2A — d)? that arises when relating the boundary-to-boundary propagator to the boundary
limit of the bulk-to-bulk propagator was discussed in, for instance, [59]. In our case, d = 1.
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in terms of the bulk-to-bulk propagator

J DWexp (—S52[0¥]) 6V o (t1, 21)8 Vi (t2, 22)
t ;T = . .
Goor(h, 2132, 22) T DoGexp (—5[0]) (38.7)

Because S, is proportional to the string tension, the bulk-to-bulk propagator is proportional

to its inverse, and the fluctuation piece in (3.5) is suppressed relative to the classical piece by
1/g. Thus, to determine the subleading correction to the large charge four-point functions
using AdS/CFT, we need to determine the quadratic action of the fluctuations, compute
the bulk-to-bulk propagators, and then send the two bulk points to the boundary.

We will compute the boundary-to-boundary propagators by first solving the Green’s
equations satisfied by the bulk-to-bulk propagators. This is the most technical step of the
analysis and is the focus of section 4. The classical string is not homogeneous, unlike the
AdS; string dual to the Wilson line without insertions. Nonetheless, since the classical
string is symmetric under translations parallel to the boundary in global coordinates, we
can take the Fourier transform with respect to the boundary global coordinate, in which
case the Green’s equations reduce to ODEs in the bulk global coordinate. The ODEs turn
out to be of the Jacobi form of the Lamé equation, the solutions of which are known and
given in terms of the theta functions. This lets us write explicit integral representations
of the propagators. Moreover, we may write the boundary-to-boundary propagators as
sums over the residues at the poles, which take particularly simple forms when written
in terms of the fluctuation energies of the fluctuations. The series representations of the
boundary-to-boundary propagators can be interpreted either as sums over stationary waves
on the classical string, which lets us make contact with integrability in section 6, or as sums
over primaries in the conformal block expansions of the four-point defect correlators, which
lets us extract dCFT OPE data in section 5.

One could also study the subleading behavior of the two-point function that we normalize
by in (3.5), by evaluating a functional determinant that takes the schematic form

T/'_l/ oW

(27 (t5) 2 (14)) ox ¢~SrorlVel (Det O S m) T aso0/g). (3.8)

fluctuation
The classical contribution was computed in [41] and is given in eq. (2.9). The calculation of
the fluctuation determinant is a non-trivial problem whose solution we will not pursue in
this work.”

The above sketch of the semiclassical analysis suppresses many details, including the
standard steps of picking a suitable gauge and coordinates, redefining fields, simplifying
the quadratic action, and keeping track of how these choices affect the dictionary given
schematically in (3.5)—(3.7). In the remainder of this section, we will derive the quadratic
action of the bosonic fluctuation modes in detail, identify the Green’s equations satisfied
by the bulk-to-bulk propagators, and formulate the precise dictionary between the defect
correlators and the boundary-to-boundary propagators.

In addition to needing to compute the functional determinants of the bosonic fluctuation operators,
which would be complicated by two of the modes being coupled in the coordinates we use in section 3.2, we
would also need to include the contributions of the fermionic fluctuations.
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3.2 Quadratic action for the fluctuations

We begin by choosing coordinates for AdSs x S°. We will use Euclidean signature throughout.
First, we introduce the embedding coordinates X4, A = 1,...,6 for AdSs and Y/, I =
1,...,6 for S° These satisfy napX4XB = —1 and 6;;Y'Y” = 1, where nap is the
Minkowski metric tensor on R>! (with mostly plus convention), and d;; is the standard
Kronecker symbol on R. The metric on AdSs x S® may then be written:

ds? = d32Ad85 + ds’s,

3.9
d32Ad85 = UABdXAdXB ) dsgqs = 51]dYIdYJ. (3.9)

Next, we parametrize the embedding coordinates in a way that is adapted to studying the
fluctuations of the dual string. It will be convenient to foliate AdSs by AdSs x S? slices:

xo= 2 X4 x5, X0 = L (G cosh psinh 7, cosh pcosh 3.10

Here p, 7 € R are the bulk and Euclidean time coordinates on the AdSs slices and z% € R,
a =1,2,3, are three orthogonal coordinates with norm z = v/x%z®. If we decompose z% into
radial and angular coordinates, then the two angular coordinates are coordinates on the S?
slices and the radial coordinate = parametrizes the different S? x AdS, slices. Similarly, it
will be convenient to foliate S® by S% x St slices:

yi— % Y6 — M, V4 4 iY5 = sin 0’9, (3.11)

1+ 12 1+ 372

Here ¢ € [0,27) is the azimuthal angle on the S! slices corresponding to rotations in the
Y4 —Y? plane, ' € R, i = 1,2, 3, are stereographic coordinates on the S? slices with norm
7=7'y,and 0 € [0, 7) parametrizes the different S x S slices. We have written the coor-
dinates on S° with bars to distinguish them from redefined coordinates that will appear later.
In terms of the 2%, p, 7 and ¥*, #, ¢ coordinates, the metrics on Euclidean AdSs and S° are

(1 + %xz)Q dzdz®

dsdas, = 5 (dp? + cosh? pdr?) + ————, (3.12)
(1 — %xz) (1 — %aﬂ)
_ _ _ difddi?
ds%s = d0? + sin® 0dg? + cos® — . (3.13)
(1+19)

Now we turn to the string in AdSs x S° that is dual to the Wilson line with Z” and
Z7 inserted. We take the spacetime contour of the Wilson line to be a pair of antiparallel,
antipodal lines located at the boundary of AdSs at p — +oo (one may later perform a
conformal transformation to the infinite straight line or circular loop). The contour at 2% = 0
and p — 400 runs in the positive 7 direction, the contour at z* = 0 and p — —oo runs in
the negative 7 direction, and Z”7 and Z” are located at 7 = —oo and 7 = oo, respectively.
This configuration in global coordinates has manifest translational symmetry along 7. The
classical string dual to this operator was discussed in [8, 49, 50] and reviewed in [41]. To
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summarize, the string forms a strip in AdSs that stretches between the two antipodal lines
at p — +oo and partly wraps an S? in S%, carrying angular momentum .J. Since the S°
embedding coordinates Y7 are dual to the scalars ®;, and since the Wilson line couples to ®g
and Z and Z are chiral combinations of ®4 and ®5, the S? wrapped by the string is given by
(YH2 4 (Y5)24(Y%)2 = 1. With ¢ = 01in (3.11), § and ¢ are its polar and azimuthal angles.

With p and 7 serving as the worldsheet coordinates, the classical dual string is given by:'°

b= da(r)=do—ir.  (3.14)

Here, the parameter ¢ € [0,1), which we introduced for convenience in (2.9), determines the

z* =0, 7 =0, sinf = sin 6. (p) = L,
cosh p
maximum polar angle of the string as well as the angular momentum of the string in the
Y# — Y? plane. Fixing the angular momentum to be .J yields the condition (2.10). Finally,
the parameter ¢g in (3.14) is a modulus of the classical solution. This modulus played an
important role in [41], but a limited one in the present analysis. When mapping the string
observables to the dCFT observables, one should integrate over the modulus to ensure that
the string observables are dual to CFT observables in an R-charge eigenstate rather than a
coherent state. The integration ensures that correlators not having equal numbers of Z and
Z are zero, and also gives rise to non-trivial combinatorial factors when the chiral primaries
are non-zero linear combinations of both Z and Z. However, in the computation of the
correlators in (2.19)—(2.22), the integration over ¢q is trivial and we will ignore it.

We are interested in the bosonic fluctuations about the classical solution in (3.14). We
will work with the Nambu-Goto action and choose the static gauge such that p and 7 are
not dynamical and serve as the worldsheet coordinates. For notational convenience, we
package them into o* = (p,7), and let 0, = 0/Jdo". We denote the AdS, metric by hy,
and the metric induced on the classical string by ~,,,, which are explicitly

hu = diag (1, cosh? p) , (3.15)

htp — 2 1
O P7C diag (_621> (3.16)

Yur = hp,l/ + 8}L0c18y9c1 + Sin2 0C18H¢C18V¢Cl - COSh2 P

cosh? p

We also note the inverse metric and the tensor density (here v = dety,,):

h2 h4 2
= SO giag (cosh?p—c21), A= M PTE  (3.17)
cosh® p — ¢ cosh? p\/m

The quadratic action of the bosonic fluctuation modes can be found by expanding the
Nambu-Goto action

S =2g / d*oVT, (3.18)
f

around the classical solution. Here 2g = 2—7? is the string tension, and the induced metric
on the fluctuating string is:

2 —
(1 + %xz) b 0z, x cos?

v

r

v (1_%$2)2 1

10Recall that we have already performed a Wick rotation to Euclidean AdS. The solution in Lorentzian

5 + 0,00,0 + sin® 00,60,¢ +

(1 _ %lﬂ) (1 n iy2)2augl uﬂz.

(3.19)

signature is the same but with ¢c = ¢o + 71, where 7, is the Lorentzian time coordinate of global AdS.
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The z% coordinates within AdSs are already suitable for the small fluctuation expansion.
For the coordinates in S°, it is convenient to define the fluctuation fields ¢, § and ¢ as

1 1

o i =0+ —
Y )

0 b = c
7,0 ’ = fat

|

1
md), (3.20)

where

cosh? p—¢2 cosh py/cosh? p—¢2 __ccoshp
2 Vot ooty (3.21)

a coshp = cosh? 2 a h* 2
\/ p—c \/cosh® p—c

The rescaling by the p dependent factors is necessary in order to obtain canonical kinetic
terms for the fluctuations. Plugging (3.20) into (3.18) and expanding to quadratic order in
x% 1yl 0, ¢, the final result for the quadratic action takes the form (see appendix B for the
detailed derivation):

Sola, 4,0, ] = 29 / o /7 [£7 4 o 1 7], (3.22)
where
T 1 v a a 1 2 a,..a
L% = 5’}/“ 0z 0y + imx(p)az z?, (3.23)
1 , 1 o
LYY = g’yﬂyapyl Vyz + §7fnl2/(p)y7‘y7‘7 (324)

and the “masses” are given by

cosh? p(2 cosh? p — ¢?) 9

2 | my(p) _ c? (cosh2 p— 2)

m(p) = 5

x

(3.25)

cosh* p — ¢ cosh* p — ¢

Note that m2(p) — 2 and mg(p) — 0 as ¢ — 0 or p = %00, which are the expected values
of the masses for the fluctuations around the undeformed AdS, string. The Lagrangian £¢
for the coupled 0, ¢ modes is slightly more complicated and takes the form

1 m§
L9 = S (9,00,0 + 8,60,9) + % (02 + ¢%) — is(00-0 — 60,0), (3.26)
where the prefactor for the cross-term is

cosh? p(— cosh? p + ¢2 cosh 2p)
(cosh? p — ¢2)2

s , (3.27)

and the mass is

1
mgd, =7 3 cosh'® p + % cosh® p(10 — 12 cosh? p 4 cosh? p) (3.28)
(cosh® p — ¢?)

+ ¢* cosh? p(1 — 12 cosh? p 4+ 10 cosh? p) + ¢ cosh? p

<>
Note that # and ¢ are coupled by the 00,¢ = 00,¢ — $I,6 term and there does not appear
to be a simple coordinate transformation to decouple them. Note also that, from the dCFT
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Figure 3. A qualitative sketch of the four types of bosonic fluctuations of the semiclassical string
dual to the Wilson line with Z7 and Z”7. In the static gauge, there are (a) 3 fluctuation modes,
labelled 2%, orthogonal to the AdSs strip formed by the classical string in AdSs, and (b) 1+1+43
fluctuation modes, labelled ¢, 6 and y?, in the azimuthal, polar and orthogonal directions of the 52
partially wrapped by the classical string in S°.

perspective, the SO(5) R-symmetry of the Wilson line that is broken to SO(3) by the
insertion of Z7 and Z” should be restored when J = ¢? = 0. In terms of the dual string,
this implies that there should be a choice of coordinates in which the five S fluctuation
modes appear the same when ¢? = 0. The restoration of the broken SO(5) symmetry is not
manifest in terms of the y?, # and ¢ fluctuation fields, because when ¢ — 0, then mg -0
but m§¢ — -1/ cosh? p and s — —1 / cosh? p. The symmetry can be made manifest, at
least at quadratic order, by rotating the combination (6, ¢) by i7. This is done explicitly in
appendix C, where it is a useful first step in the perturbative analysis of the 6 and ¢ modes.

To summarize, (3.22) is our final result for the quadratic action of fluctuations in the
static gauge. The eight transverse bosonic modes z%, v, # and ¢, which are schematically
depicted in figure 3, can be viewed as fields propagating on an asymptotically AdSs
background, where the deformation from AdSy corresponds to turning on the non-zero
angular momentum. Note that there is a manifest SO(3) x SO(3) g symmetry rotating the
x and y coordinates, and the z, y and 6/¢ coordinates are decoupled to this order.

Let us finally remark that the expansion to quadratic order around a generic classical
string solution in AdS; x S° was discussed using a rather general formalism in [60] (see
also [61]), working with the Polyakov action. We have checked that the results given in [60]
precisely agree with (3.23), (3.24) and (3.26)—(3.28).1!

1 Our quadratic action in static gauge should be compared with the action for the transverse fluctuations
given in eq. (3.35) of [60].
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Bulk-to-bulk propagators. The bulk-to-bulk propagators for the fluctuation modes,

Gyys Gez, Gog = Gy and Gygg = —Gog, satisfy Green’s equations that follow from the

quadratic action. For the z and y modes, they are'?

[%fh (V71" ) - mg%(p)] Goalpy 70, 7') = —2giﬁ5<p — 6 -7, (3.29)
[%@ (VI"B,) — m§<p>] Goy(p. il 7) = —2glﬂ6<p — s =) (3:30)

Meanwhile, since the 6 and ¢ modes are coupled in the Lagrangian in (3.26), the corre-

sponding bulk-to-bulk propagators satisfy coupled Green’s equations:'3
1 1
—0 a,) —m2 Goo + 2is(p)0;Gyg = ————06(p — p)o(r —7'),  (3.31
l\ﬁ i (VY Oy) 9¢(P)] (p)0-Goy NG (p—p")d( ), (3:31)
1 .
[ﬂaﬂ (Vo) — mzd)(p)] Ggo — 2is(p)0-Ggg = 0. (3.32)

These equations are accompanied by the boundary condition that each propagator vanishes
at both boundaries of the strip: G(p,7;p,7") = 0 as p — +oo. The normalization of
the delta function on the r.h.s. of (3.29)-(3.31) makes it explicit that the bulk-to-bulk
propagators scale with the inverse of the string tension.

The propagators have a number of useful symmetries that follow either from the
quadratic action or the Green’s equations. First, G., Gy, and Ggg are all real, even
under interchange of the bulk points (e.g., Gz (p, 750, 7') = G (p', 7’5 p, 7)), even under
parity (e.g., Guu(p, 750, 7") = Guu(—p, 75—, 7)) = Guu(p,—7;p',—7)), and invariant
under translations along 7 (e.g., Guz(p, 750, 7") = Guu(p, 7 + a; 0,7 + a) for any a €
R). By contrast, while Gy is also invariant under translations along 7 and even under
p,p — —p,—p', it is imaginary, odd under interchange of the bulk points, and odd under
7,7" = —7, —71'. The difference in behavior of Gy can be traced to the isd; terms in (3.31)
and (3.32).

From global to Poincaré coordinates. So far we have studied the fluctuations of the
dual string using coordinates on AdS5 x S° in which the AdS, slices are parametrized by the
global coordinates, p, 7. In these coordinates, the translational symmetry of the classical
string is manifest. However, Poincaré coordinates are perhaps a more familiar choice
for stating the AdS/CFT dictionary between the defect four-point correlators in (2.19)—
(2.22) and the bulk-to-bulk propagators and classical vertex operators. Thus, we will also
parametrize the AdSs slices using Poincaré coordinates ¢, z that are related to the global

12The Green’s equation for the y* modes follows from evaluating the functional derivative in 0 =
nym (exp (f2gfd20ﬁ£yy) yj(p’,T')). Likewise for the x* modes.
13 These follo:v, respectively, erOm eva;uating 0= fDQDqﬁﬁ (exp (—ngdQU\ﬁC%) Q(p'm")) and
/ /
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coordinates by'*

, e (tanh p £ isech p)ts + t3
t = . 3.33
T e (tanh p + isech p) + 1 (3.33)

We take the upper sign if t3 < t4 and the lower sign if 3 > t4 so that z > 0. Going forward
we assume t3 < t4. The transformation indeed satisfies dp? + cosh? pdr? = Z%(alt2 + dz?).

Two properties of (3.33) are worth noting: firstly, Z/ and Z” are located at t3 and t4,
respectively, on the AdSs boundary in accordance with (2.19)—(2.22). This follows from
sending 7 — —oo and 7 — oo in (3.33). Secondly, to send the bulk point p,7 to the
boundary point t, we

t—t
fix 7 = log ﬁ , and send p — noo (3.34)
. —

where n =1 if t3 <t < t4 and n = —1 otherwise. In this limit, z is asymptotically

Attt =1,

P— (3.35)

3.3 Four-point functions as boundary-to-boundary propagators

We are now ready to state the precise dictionary between the defect correlators on the
Wilson line and the propagators on the classical string.

First, we identify the fluctuation modes dual to the elementary insertions introduced in
section 2. The six scalars, ®7, in N/ = 4 SYM are dual to the S° embedding coordinates, Y7.
In particular, in the dCFT the ®;, i = 1,2, 3, appearing in (2.19) are dual to Y;, while Z and
Z are dual to Yy + Y5 = sin e and Y, —iY5 = sin ée‘i‘g, respectively. Let us recall that
the holographic correlators depend only on the asymptotic behavior of the fluctuation fields
near the worldsheet boundary (see, e.g., (3.1)(3.2)). Thus, given that y; — 0, § — 64 — 1
and f, — 1 as p — Fo0, it follows from (3.11) and (3.20) that Y; ~ y; asymptotically. We
may therefore equivalently take the fluctuation field dual to ®; to be y;. Indeed, as can
be seen from the Lagrangian in (3.24), the y; have an SO(3) C SO(6) rotational symmetry
and their masses asymptotically satisfy mf/ — 0 as p = £oo, whose dual statements in the
dCFT are that the scalars ®; preserve an SO(3) C SO(6) R-symmetry and have scaling
dimension A = 1.1 We will also shortly discuss what the string observables look like when
the fields dual to Z and Z are expressed in terms of § and ¢, which are related to 6 and ¢
by the field redefinitions in (3.20). For now we note that the masses of the § and ¢ fields
satisfy m3 s — 0 asymptotically near the boundary (see (3.28)), which matches the fact that
Z and Z have scaling dimension A = 1. Finally, the displacement operators D, are dual
to the AdS; embedding coordinates, X,, a = 1,2, 3, that are transverse to the Wilson line
on the boundary. Again because z, — 0 as p — +o0, it follows from (3.10) that X, ~ x4
asymptotically and therefore we may equivalently take the fluctuation field dual to D, to be

1To study correlators with Z7 at t = 0 and Z” at t = oo, we should instead use Poincaré coordinates
t, z that are related to the global coordinates by ¢ + iz = e” (tanh p + isech p). These are related to the
coordinates in (3.33) by an SL(2,R) transformation.

5Recall that for a scalar, m? = A(A — d). In our case d = 1.
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zq. Indeed, as can be seen from the Lagrangian in (3.23), the z, have an SO(3) symmetry
of rotations in AdSs about the classical string and their masses satisfy m?2 — 2 as p — 400,
whose dual statements in the dCFT are that the D, have an SO(3) symmetry of rotations
in R* about the Wilson line and have scaling dimension A = 2.

The vertex operators dual to ®;, D,, Z and Z are therefore:

= lim 22y, i 29
ve, (t) = lim —>vi(2, 1), vp, (t) = lim —5 4 (2, 1), (3.36)
. 29 . /n id(z 1 2g Y —id(z
vz(t) = ll_r)% - sin(0(z,t))e" ) vz(t) = il_% ~ sin(0(z, t))e =t (3.37)

This makes (3.2) precise. Although the above vertex operators are defined using Poincaré
coordinates, we will take advantage of the simplicity of the classical string in global
coordinates and take the bulk-to-boundary limits using (3.34) and (3.35).

Given (3.14), the vertex operators on the classical solution simplify to:

oo T4 — 13 iy ta—t3
Ve, vy = v, lwg =0, vz(t)lw, = 2966@0@’ vz(f)wq = 2gee mom'
(3.38)

These expressions for the classical vertex operators, which determine the leading large
charge behavior of the defect correlators consisting of powers of Z and Z in the background
of Z7 and Z7, are familiar from [41]. Meanwhile, the subleading large charge behavior
due to the quadratic fluctuations about the classical solution are determined by sending
the endpoints of the bulk-to-bulk propagators to the boundary as outlined in (3.5)—(3.7).
In particular, given that the vertex operators dual to ®; and D, are zero on the classical
solution, the leading contribution to the defect correlators in (2.19) and (2.22) are given by

<‘I)i<t1)(1)'(tz)ZJ(tg)ZJ(t4)> B 3

I A (3:39)
(Do (t1)Dy(t2) 27 (t3)Z7 (ts))

(Z7(t3)Z7 (t4)) = Waa(t1,t2)0ab, (3.40)

where the boundary-to-boundary propagator W (= Wy, Wy;) is related to the bulk-to-bulk
propagator G (= Gyy, Ggzz) by

2qg 2
Wt ta) = 28— 1)? lim_ 2 2G(t1, 213 b9, 20)
2107 217 25

22~>0+

(2A —1)? g2 y*° : Ap meAp!
= "5z 7N T p_l}Tri?oo NP2 Gp, (t1); p', T(t2)). (3.41)
12 p'—>7]200

In the second line, we have sent the bulk point to the boundary in accordance with (3.34)
(see figure 4) and written the ratios of distances on the Wilson line coming from (3.35) in
terms of the conformal ratio x defined in (2.15). Because of the translational symmetry
along 7, G depends only on the difference between 7(t1) and 7(t2), which reduces to

tigt
tﬁﬂ = —log |l — x|- (3.42)

T(tl) — T(tz) = log
14 o3
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Figure 4. Sending the endpoints of the bulk-to-bulk propagators to the boundary in global ((a)
and (b)) and in Poincaré ((c) and (d)) coordinates, in accordance with (3.34). When the bulk points
are sent to opposite boundaries in global coordinates, as in (a), the light insertions on the Wilson
line are separated by the heavy insertions, as in (c). In this case x > 1. When the bulk points are
sent to the same boundary in global coordinates, as in (b), the light insertions are between the two
heavy insertions, as in (d). In this case y < 1.

Thus, the boundary-to-boundary propagator has the same conformal form as the defect
correlators in (2.19)-(2.22).

Finally, we express the vertex operators dual to the light insertions Z and Z in terms
of the rescaled fluctuation fields # and ¢. We begin by expanding vz in (3.37) to linear
order in § and ¢:'6

2 . 0. in 0,
vz(t) = lim ?g lsm fare'e + 0;6 Leideg 4 f¢ Leielgp
= vz(t)|a, + €T hr% (6+ig) + (3.43)

%Higher orders in 6 do not contribute because 0/fs ~ e¢¥* as p — £co. On the other hand, because
¢/fs — 1 as p — Foo, the vertex operator has a series of corrections involving higher orders of ¢,

. . 2 3 . . .
€TI0 im0 22 (—2‘% — ;‘% + .. .), which are not suppressed. There may be a more convenient choice
Yo

of coordinates than the one in (3.12)—(3.13) that avoids this undesirable behavior. However, practically
speaking, at the order in the large charge expansion that we are considering, we may simply ignore the higher
order terms in the vertex operators. Contractions between more than one pair of copies of ¢ in different
vertex operators involve at least two bulk-to-bulk propagators and are suppressed by 1/g. Furthermore, while
there is a contribution at the order of interest in the large charge expansion involving the self-contraction
between the two copies of ¢ in the term ~ lim._, %, it yields a constant that can be absorbed into the
definition of the vertex operator.
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To get to the second line, we used that cosf./fg — 1 and sinf./fy — 1 as p — £oo, which
follow from (3.14) and (3.21). Likewise, vz in (3.37) expanded to linear order is

ido 1o 2 :
vz(t) = vz (B)lwy + 7O lim ?9 0 —i)+.... (3.44)
Thus, the holographic expression for the leading and first subleading terms in the large
charge expansion of the defect correlators in (2.20)—(2.21) is:
(Z(t1)Z(t2) 27 (t3)Z” (t4))

(77 (t5) 27 (12)) =vz(t1)|w, vz (t2)|w, + 2€T(t1)—7(t2)([/V%(tl7 t) + iWeo(t1, t2)),

(3.45)

= = vz(t1)|w,vz(t2)|w, + 27T (W (t1, t2) — iWe(t1,12)),

(3.46)

where the boundary-to-boundary propagator W (= Wy, Wyp) is again given in terms of
the bulk-to-bulk propagator G (= Ggg, Ggg) by (3.41) with A = 1.

Finally, we note from (3.38) that the classical pieces in (3.45)—(3.46) are explicitly:
49262 X2 49262
vz(t)lwavz(t)lvn = —5— 4~ vz(t)lwavz(ta)|w, = —5—x>. (3.47)

tf, (1—x) t1o

4 Computing the Green’s functions

The last step in determining the defect four-point correlators is to compute the boundary-
to-boundary propagators. We begin by presenting a general way to express the bulk
propagators as integrals over Fourier modes conjugate to the global boundary coordinate,
send the bulk points to the boundary, and rewrite the resulting integral representation of
the boundary propagator as a series. We then apply the procedure to first compute W,
which lets us determine Wyy and Wpyy4 via the superconformal Ward identities, and then
compute W,,.

4.1 Integral and series representations of the propagators

Taking advantage of the symmetry of the classical string in (3.14) under translations in the
global time coordinate 7, we write the yy and xx bulk-to-bulk propagators in their Fourier
representations:

1o
Glp,mip,7) = T/ dke™ T g(p, o' k). (4.1)
7Tg —00
Here, G = Gy, and g(p, p'; k) = gyy(p, p'; k) or G = Gy and g(p, p's k) = gaa(p, p's k).

Noting the explicit form of the d’Alembertian on the classical string worldsheet in
global coordinates,

0 0 1 0?
ny — h2 2 -
Ay (VA" 0y) o5 ( cosh”p —c 8,0) + Tp— 5.2 (4.2)
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and substituting the Fourier representations of G, and G, into (3.30) and (3.29), we find
that gyy and g, satisfy

2
(OZ) (Wﬁ) —— - ﬁmz(p)> glp,p'ik) = =8(p—p'), (4.3)

cosh? p — ¢2

2

where m” = m 2=m2

12! or m“ = mj, as appropriate. We additionally impose the boundary condition
g(p,p';k) = 0 as p — +o0, which gives the standard asymptotic behavior g ~ eFor 17
We also note the symmetries of g: g(p,p'sk) = g(p',p; k) = g(—p,—p'; k) = g(p,p; —k).
These properties follow from (4.3) and/or the discussion after (3.32). It follows that G only
depends on 7 and 7’ through the combination |7 — 7/|.

The equation for g(p, p; k) simplifies if we change variables from p to the compactified

coordinate

p V1= c2dy 1
r= / i N, | (zp‘) , (4.4)
0 1—¢2

\/cosh? p/ — ¢2

where F(z|m) is the incomplete elliptic integral of the first kind. Equivalently, cosh p =
cn (zr|#), where cn(x|m) is the Jacobi elliptic function.!® The asymptotic behavior of r
as p — oo will play an important role in what follows. It is given by

r~+ (rm + e’ + O(ejFQ”)) . where r,, = V1 — 2K(?) and 7, = —2V1 — 2. (4.5)

Note that the change of variables in (4.4) is essentially the one that puts the induced

metric (3.16) in the conformal gauge form (up to rescaling by a constant factor).!

After the change of variables, (4.3) becomes

d2 ka \/ COSh2 —c? m2 Slr — 7'
a? 1-c2 1P_ 2 v g(r.r'sk) = = (/77’ Tz)' (4.6)
r ¢ ¢ cosh p—cn <2r| 1_1€2> l1-c
The solution to (4.6) may be written in the following piece-wise form:
g(r,7's k) = a(k) [g"(rs k)g" (' K)0(r = 77) + g™ (r; k)" (s kYOG — )] (4.7)

Here, g* and ¢ solve (4.6) without the delta source term and satisfy the boundary
conditions gf* — 0 as r — r,, and g — 0 as r — —r,,. The normalization a(k) is fixed by
needing to reproduce the prefactor of the delta function in (4.6):%"

1 (dgRsk) p, o dgtsk) g\
a(k) = Vi ( o9 (rik) a9 k)| (4.8)

"Eq. (4.3) reduces to [e:’:p% (ei"dip) —m?|p5+00]g = 0 in the regime p — +oo.

18Using (A.23), we can put the elliptic function in the form cn (zr|ﬁ) = dc(r/v/1 — ¢2|c?), which makes
it clearer that p — r is a real map.

19See appendix E of [50] for the form of the solution in conformal gauge.

*Note that a(k) is independent of r, since <ta(k)™" = 0 because of (4.9)-(4.10). Furthermore, there is
a “gauge” freedom to rescale g% or g~ by some X # 0 because we impose a single homogeneous boundary

condition on these solutions. Because a(k) is rescaled by a compensating factor of 1/, g(r, r’; k) is unaffected.
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The explicit forms of the homogeneous differential equations that g* and g% solve for
the two different fluctuation modes are:

d? 2¢2 ‘ 1 -2 -k
(—er + — o (zr\ T 02> ) gyLy/R(r; k)= 2 ngy/R(r; k), (4.9)

d? N 2 ( |
——— 4+ ——cn|(ir
dr?2  1—¢? 1—

We can always choose g~ and g% to satisfy

1 2 2 —k?
2 ) )%La{R(ﬂk) ﬁg%R(r;k). (4.10)

gf(ri k) = g"(r;—k) = g"(—r; k). (4.11)

The second equality can be imposed because the masses are even under p — —p or,
equivalently, cn(ir|ﬁ) is even under r — —r. Finally, we note that the boundary
conditions impose the following asymptotic behavior:

gt~ (r=rn)®  as T — gh~ (r+rn)®  asr — —rp,. (4.12)

Eq. (4.1) and (4.7) give an explicit integral representation for the G, and Gy, in terms
of solutions to the ODEs in (4.9)—(4.10). The next step is to convert the integral in (4.1) into
a sum of residues. First, we replace 7 — 7/ by |7 — 7’| in (4.1) (see the comment below (4.3))
and close the contour in the upper half-plane. There is no contribution from the arc at
infinity because of the e*I7=7' term as long as 7 # 7/. Next, we note that g(r,’; k) has
poles where 1/a(k), the Wronskian of g (r; k) and g”(r; k), is zero. For these values of k,
g™ and g” are linearly dependent and define a single solution that vanishes at both 7 = 7,
and r = —rp,. Egs. (4.9) and (4.10) take the form of the time-independent Schrédinger

—92 2
equation with real potentials V,(r) = zfzg cn (zr! 1502) and Vy(r) = 1= 2 Tzcn (zr\ - )

I
(and h?/2/m = 1). Therefore, the solutions g” o g at the poles are naturally mterpreted

as bound states of a one-dimensional particle with energy £ = 012__522 moving in a potential

V(r) (= Vy(r), Vx(r)) with hard walls at r = £y, (because of the boundary conditions on
g™ and g). As we will verify explicitly in sections 4.2 and 4.3, the poles of both g,,(p, p'; k)

and g..(p, p'; k) lie on the imaginary k axis. Alternatively, this follows from the fact that
the energy eigenvalues are necessarily real?! and obey the bound & > 157, which means
the bound states only exist for k2 < 0. The lower bound on & is obv1ous for V(r), which

attains the minimum value %62 at r = 0, and can be verified numerically for V,(r). The

1
behavior of g% and g* at and away from the poles of g(r,r; k) is illustrated in figure 5.
Therefore, labelling the poles k, € iR™, n =0,1,2,..., we can write the bulk-to-bulk

propagator as

1
ikn|T—T| Ry .. L/t
G(r. 71, 7) Z € <47Tg fkn dk a(k:)> 97 (rikn)g”™(r's k). (4.13)

We used (4.7) and the fact that ¢Z(r;k,)g"(r's k) = g% (r; kn)g®(r'; k), which follows
because g* oc gft at k = k,,. We have also assumed that the k,, are simple poles of g(r,7’; k),
so we can evaluate g™ and ¢” at k, and pull them out of the contour integral.

2'The operator —% + V(r) is Hermitian with respect to the L? norm on the interval [—r,, 7).
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Figure 5. The contour in the Fourier integral representation of the bulk and boundary propagators
runs along the real k axis (shown in blue). We can close it at infinity in the upper half plane and pick
up the residues at the poles, k,, n =0,1,2, ..., along the positive imaginary k axis. The insets sketch
the solutions g% (r; k) (orange) and g”(r; k) (purple) at a few representative values of k, including
at the poles (kg, k1 and k2), on the imaginary axis away from the poles, and on the real axis.

To convert the series for the bulk-to-bulk propagator into a series for the boundary-
to-boundary propagator, we send p — m00 and p’ — ng00 (which sends r — n7ry;, and
r" — nary) in accordance with (3.41). We can do so term-by-term in the series because each
g®(r; ky) or g¥(r; ky,) vanishes at both r = £r,, and combines with the divergent factor
e to yield a finite result in terms of k,. There are two distinct cases to consider: n; = 1y,
when the two bulk points approach the same boundary, and 7, = —n2, when the two bulk
points approach opposite boundaries. These two cases are related in a simple way, as we
can see by again exploiting the analogy with the Schrédinger equation in one dimension.
Because the parities of the energy eigenstates in an even potential alternate (with the ground
state being even), it follows that g'*(r;k,) = g*(—r;k,) = (—1)"g®(—r; k,). Therefore,

Jim e"0g i (r(p)ikn) = lim e 1gH(r(p)ikn) =" Jim eSg"(r(p)ikn)- (4.14)
This is useful because it is easier in practice to evaluate the first limit on the L.h.s. of (4.14)
when 7 = 1. This is because the limit of e2?g%(r(p); k) as p — oo is finite for any k while
the limit as p — —oo is finite only if £ = k,,.

Combining (3.41) and (4.13), and applying (3.42) and (4.14), we finally arrive at the
following series representation for the boundary-to-boundary propagator:

IAN—1)2 g ¥ & il llog |1—
Wit t2) = ( 22A—2) 2A — A > (—mumg)nethnllosi=xl (4.15)
ti3 [1 = x| n—=0
1 . Ap R . 2
X (477 A dka(k)) (plg]goe g (r(p),kn)) .

Note that 172 = sgn(1 — x).
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It is also possible to send the bulk points to the boundary without writing the Fourier
integral as a sum of residues. This is mainly useful if we can interchange the limit and
the integral, which requires that the two bulk points be sent to opposite boundaries. For
instance, if we first send p — oo inside the integrand of (4.1), then the step function in (4.7)
sets g(r,r'; k) = a(k)g®(r; k)g"(r'; k) and we must subsequently send p/ — —oo because
g*(r'; k) does not vanish at p’ — oo for real k. We find the following integral representation
for the boundary-to-boundary propagator, which is valid when y > 1:

2A_12 2A 00 ) 2
Wit ta) = U e i [ ke ) (fim e (o)) - (416)
12 —00

2287 p—r00

In certain cases, this representation is more useful than (4.15).

4.2 Computing Wy,, Wy and Wy

We now implement the analysis developed in the previous section to find the boundary-
to-boundary propagator W,,. Via (3.39) and (2.19), this determines the leading large
charge behavior of the defect correlator (®®Z7Z7) /(Z7Z”7) and of G1(x). Using the
superconformal Ward identities, we will then also determine G,z (x) and G 3,(x), which
are equivalent to Wyg and Wyy.

4.2.1 Computing W,

The key to computing W,, analytically is to recognize that (4.9) can be put in the Jacobi
form of the Lamé differential equation. This ODE appeared previously in studies of one-
loop corrections to the energies of “elliptic” classical strings in AdS5 x S° [62-65].22 We
summarize the equation in appendix A along with conventions and identities for the elliptic
integrals, Jacobi elliptic functions, and the theta functions. These special functions appear
prominently throughout this section.

In order to put (4.9) into the Jacobi form of the Lamé equation, we rewrite it in terms
of the new coordinate

cr 1 ‘ 1
Using the identities in (A.18)-(A.20) and (A.21)-(A.23), we can simplify (4.9) to

2 1
2 2
[—80 + 20 <a| 02>

This matches the form of the Lamé equation given in (A.29), if we identify the parameter

c2

k2
gﬁlWMﬁz<1—>g@”wwu (4.18)

m and the eigenvalue A to be:

2
A=1-F (4.19)

m
C2

1
?7

22These are strings whose solutions can be written simply in terms of the Jacobi elliptic functions, and
include the rotating folded string [62], pulsating strings [63], the string incident on anti-parallel lines on the
boundary [64], and a two-parameter family of strings incident on contours that interpolate between a circle
and antiparallel lines [65].
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Because they are ubiquitous in the following discussion, it is convenient to introduce
the following standard shorthand:

KEK<;)—%@%—mmLmn (4.20)
K =K (1 - ;) = cK(1 - ¢?). (4.21)

The second way of writing K and K’ follows from (A.3)-(A.4). Since K(c?) and K(1 — ¢?)
are positive real numbers for ¢? € (0,1), it follows that K’ and K + iK' are also positive
real numbers, but K is complex. It will be convenient to work with K and K’ and convert
to explicitly real expressions only at the end.

We also note that as r runs from —7, to ry,, ¢ in (4.17) runs from o_ to o4 along the
real axis, where

o_ =0, o = 2K + 2iK'. (4.22)

As reviewed in appendix A, the solutions to the Lamé equation are known in terms of
theta functions. In particular, two linearly independent solutions to (4.18) are

H(+0 + afm)
©(c|m)

fE(o;a) eToZlalm), (4.23)
Here H, © and Z are defined in (A.32), and « is related to k by the transformation
sn (a|lm) = V1 + k? or, equivalently,

k =icn (alm). (4.24)

Because the Jacobi elliptic functions are doubly periodic (see (A.11)), the a complex
plane is an infinite cover of the k£ complex plane. We will see that this means the argument
in section 4.1 allowing us to convert the integral representation of the boundary-to-boundary
propagator into a series representation can essentially be replicated in the « plane, but
with some modification.?® We will take the “fundamental unit cell” in the a plane to be the
rectangle with vertices at a = 0, a = 2K + 2iK’, a = —2iK’ and o = 2K. A representative
set of vertical and horizontal lines in the unit cell is depicted in figure 6(a), and its image
in the k plane is depicted in figure 6(b). The periodic placement of the other copies of the
unit cell in the « plane is shown in figure 7. In particular, it will be useful to note the
pre-images of the real and positive imaginary axes of the k plane in the « unit cell: as k
runs from —oo to oo along the real axis (see figure 7(b)), a runs along the line segment
from —iK’ to iK' + 2K (see figure 7(a)), and as k runs from 0 to ci to ¢ to ico along the
imaginary axis (see figure 7(b)), o runs along the line segments from K to K+ iK' to 0 to
—iK' (see figure 7(a)).

230mne could in principle work entirely in the k plane instead, but it is more convenient to write the
intermediate expressions for the bulk-to-bulk propagators using « and the Jacobi theta functions and then
convert to expressions for the boundary-to-boundary propagators involving k only at the end.
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Figure 6. To express the propagator G, explicitly as a Fourier integral involving theta functions,
we need to change the integration variable from k, the wavenumber conjugate to global time 7, to «
via (4.24). The « plane is an infinite cover of the &k plane. The fundamental unit cell in the « plane
is depicted in (a) and its image in the k plane is depicted in (b). Recall from (4.20)—(4.21) that K’
and K + ¢K’ are real.

Using (4.23), gﬁ//L can be written

R g o) — fflosa) [ (o50)
9oy (7 )_f+(0+;04) f(o4;0) (4.25)
f(o30)  fT(o30)
f7oa)  fHo;a)

These manifestly satisfy the boundary conditions gﬁl(mr; a) = gﬁy(a_; a) = 0. The parity

and quasi-periodicity of the theta functions also imply that gffy/ L (o;0) = ggfy/ R(0+ —0;Q)

and gé:y/R(a; a+ 2Ka + 2iK'b) = ngy/R(a; a), for a,b € Z, which are analogous to (4.11).
Next, we compute the boundary limits of gfy(a; a) and g?fy (0; ). First, we note the

behavior of ¢ near the end points, which follows from (4.5) and (4.17):

gyLy(a; a) = (4.26)

o~ ot F2e?, as p — oo. (4.27)

Second, (4.12) implies that gﬁ ~oy—oaso— oy and gyLy ~o—o0_aso—o_ (up to
multiplicative factors independent of ). Thus, we find:

dgR
: R . : —p, L . vy
phm e’ gy (05 ) —phr_n e gy, (0;a) =—2c o

=—4e(V(alm)—Z(alm)). (4.28)

o=04
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Figure 7. The Jacobi elliptic function relating k and « in (4.24) is doubly periodic, satisfying
en (a + 2K + 2iK'|m) = cn (a|lm), cn (o + 2i(K'|m) = —cn (alm), as well as cn (—a|m) = cn (a|m).
Thus, the unit cells in the « plane are arranged as shown in (a). Each grouping of four neighboring
tiles labelled ‘Q’, ‘P’, ‘R’ and ‘S’, which are the pre-images of the four quadrants in the &k plane as
shown in (b), is one unit cell. The intervals (—oo,0) and (0,00) on the real axis and (0, ¢i), (ci, 1)
and (i,4o00i) in the k plane are indicated in (b) using black, blue, red and purple directed line
segments, respectively. Their pre-images in the « plane are likewise indicated in (a).

Here, V(u|m) is defined in (A.33). Furthermore, the normalization becomes

R (5. a T
ayyl(a) _ —cdgyyil;)g?fy(mr% @) = 4c(V(alm) — Z(a|m)) sinh (K + 0+Z(a|m)> :
(4.29)

To simplify this result, we used the fact that a,,(«) is independent of o to evaluate the

R
Wronskian at ¢ = 04, a point at which gfy =0 and dggy is given by (4.28).

Using % = —isn(a/m)dn (alm) (note (4.24) and (A.14)) and (A.38) to express
V(alm) — Z(a|m) in terms of the Jacobi elliptic functions, we can write the boundary limit

of the bulk-to-bulk propagator as the following integral:

ci [iK+2K do ™ (ajm) dn? (a|m) exp (—cn (am) |7 — 7))

lim ep_p,ny(p,T;p',T’) =

/p—)oo _7'('79 K/ sinh (F(a)) ’
p'——o0
(4.30)
where
g’ ot
F(a) = 5 +2(K + K" Z(a|m). (4.31)

This is equivalent to (4.16) except we changed the integration variable from & to a.
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The next step is to close the integration contour and pick up the residues at the poles.
The integration contour in the &k plane can be closed using an arc at infinity, as in figure 8(d),
but the lifted contour in the « plane, shown in figure 8(a), is not closed. However, the
periodicity of the map from « to k, illustrated in figure 7, allows us to close the lifted
contour as in figure 8(b) at the cost of doubling the value of the integral. In particular, the
contribution from the top horizontal segment duplicates the contribution from the bottom
horizontal segment, while the contributions from the right and left vertical segments cancel.
One can also see that the integral over the closed contour in the « plane is twice the original
integral by noting the image of the closed contour in the & plane, which is given in figure 8(e).

To complete the argument, we need to identify the poles of the integrand of (4.30)
that lie inside the closed contour. The poles of cn(a|m) and dn(a|m), which are at
a = iK' + 2aK + 2biK’, a,b € Z, all lie outside the contour. Thus, the only poles that
contribute are the zeros of sinh (F'(«)) located inside the contour, which lie on the imaginary
axis between —iK’ and iK’. We denote them o, n € Z, and they satisfy?*

F(ay) = nmi. (4.32)

Because Z(z|m) is odd, a9 = 0 and a_,, = —a,.

The result of deforming the contour to individually encircle the poles at each «,, is
depicted in figure 8(c), and its image in the k plane is depicted in figure 8(f). Note that
each pole in figure 8(c) is encircled once while each pole in figure 8(f) is encircled twice.
This is because «,, and a_,, for n > 0 are mapped to the same point in the k plane, so the
contours individually encircling the two poles in the a plane are mapped to two contours
encircling the same pole in the k£ plane. Meanwhile, the pole at ag = 0 is special: because
the map in (4.24) is even and therefore identifies points positioned antipodally with respect
to the origin in the « plane, the image of the closed loop encircling o = 0 with winding
number 1 is a closed loop encircling k = ¢ with winding number 2.

In order to evaluate the residues of (4.30) at a,, it is convenient to note the following
elementary result: if f(z) and g(z) are analytic at z,, f(z,) = nmi, and f'(z,) # 0, then

L9 1 9()
2mi f;nd sinh (f(2)) (=1) Fzn) (4.33)

Applying this result, we find that (4.30) can be written as

o0

2 /
P o€ _yn S (@n|m) dn” (o |m) exp (—en (an|m) |7 = 7'))
pll)rgo € G(paTapaT)_ g Z ( 1) F/(Oén) .
pl——00 n=-00

(4.34)

Conveniently, the identity (A.37) lets us write the derivative of Z(«|m), and therefore F’(«),
in terms of the Jacobi elliptic functions. Additionally, we can use (A.3)-(A.6) and (A.7) to
express K, K/, E(c%) in terms of K(c?) and E(c?), and we ultimately find
2
Fl(a) == ((1 — A)K(P) - E(C2)) + 2¢K(c?)dn? (a|m) . (4.35)

C

2More generally, sinh (F(«)) has zeros at o = v, + 2aK 4 2biK’, a,b € Z.
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Figure 8. Closing the integration contour in (4.30) and picking up the residues in both the « plane
(a)—(c) and the k plane (d)—(f). In (d), the integration contour along the real axis in the k plane is
closed with an arc at infinity. The lift of this closed contour to the « plane via the map in (4.24) is
not closed (a). Using the periodic identification of the a plane (see figure 7), the contour can be
closed as in (b) at the cost of doubling the integral. The doubling is clear from the image of the new
contour in the k plane (e). Finally, in the « plane we can pick up the residues of the poles on the
interval [—iK’, i{K'] along the imaginary axis (c¢). This corresponds to picking up two copies of the
residues along the positive imaginary axis in the k plane (f).

Eq. (4.30) is the final integral representation and (4.35), supplemented with (4.32), is
the final series representation for the boundary limit of Gy, expressed in terms of the o
variables. Both expressions are perhaps more transparent when written in terms of the
original k variables, which gets rid of the elliptic functions and recasts the quantization
condition in (4.32) in a more friendly form.

We first rewrite (4.30). F can be written as a function of k using F(k) = 7 +
fok dk92F'(), and noting (4.35). Furthermore, using (4.24) and the identities in (A.16)-
(A.17), all of the elliptic functions can be expressed in terms of k. Ultimately, we find

1 2 o kv1—c? + k2 cos(klo
Wy (1, ta) = &L X gptv1 (klog(x — 1))

T2y x =1 o 2 K()P+E(?)
T2 X VI+ R sinh (2 i 00D )

(4.36)

We used (3.41) to relate Wy, to the boundary limit of G,. Eq. (4.36) is valid when x > 1.
Next, we rewrite (4.34). We introduce the “fluctuation energies”:

E, = —ik, = cn(ayp|m), (4.37)
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which are defined implicitly via (4.32). Note that Ey = 1 and E_,, = E,,. It is perhaps more
illuminating to define the energies in terms of an integral quantization condition, which
follows from writing (4.32) as nmi = [;" doF" (o) = JEn dE' 92 F'(a) and using (4.35) and
the Jacobi elliptic function identities in (A.16)—(A.17) to simplify the result. This leads
precisely to (2.27).

Again using (A.16)—(A.17) to express the elliptic functions in (4.34) in terms of E,,, we
find that the boundary-to-boundary propagator finally reduces to:

2 1 2
W,y (t1, t2) = 9 X Z sgn(l — y)" f(E,)e Enllogll=xll, (4.38)
2 |1 B nEZ
where f(E) is given in (2.29). In (4.38), we have replaced (—1)" in (4.34) by sgn(1 — x)"
in accordance with the discussion around (4.14)-(4.15). Thus, the series representation
in (4.38) is valid for both x > 1 and x < 1. Finally, G1(x) = %t%QWyy(tl,tz) leads to (2.30).

Remarks about G1(x). Let us make a few remarks about the final result for Gi(x).
Firstly, because F,, = E_,, the positive and negative terms in (4.38) can naturally be
combined. In general, the n = 0 term must be treated separately from the n > 1 terms.
It is special both because Eg = 1 is independent of ¢? (this corresponds to the fact that
the lowest operator in the conformal block expansion of the scalar four-point functions is
protected), and because kg is the only pole in the k upper half plane that is mapped 1-to-1
with its pre-image ag in the a plane.

Secondly, as a test of our results, we can consider the behavior of the four-point
functions when ¢? = J = 0, in which case there are no large charges on the Wilson line and
the four-point functions reduce to two-point functions. (Likewise the classical string does
not rotate in S® and the propagators for the S® and AdSs modes reduce to those of scalars
with m? = 0 and m? = 2 on AdSs). It follows in this case from (2.28) that p(E) = 1 and
E, = |n| + 1, and from (2.29) that f(1) =1 and f(E) = £ for E > 1.2 Therefore, the
series representation of Wy, (t1,t2) from (4.38) becomes

W,y (t,ts) = 222 X Z sgn(1 (n + 1)e~(HDllog 1Al (4.39)
it ) = S T 2
Given that 43252 ne™™ =sinh ™2 £ and 4302, (—=1)"* 1 ne "% = cosh™? £, the series can
be explicitly summed for any x. We arrive at the result
2g 1
(@i(01)P;(12)) = Wy (11, 12)855 =~ -65;. (4.40)
12

This correctly reproduces the leading behavior of the scalar two-point function in (2.17).
Thirdly, (2.30) is a compact representation of a function defined piecewise on y €
(—00,0), x € (0,1), x € (1,2) and x € (2,00). Unpacking the absolute values yields

G1(x) = 0(—) GV () + 6(x)0(1 — )GV (y)
+0(x — 182 — )G () +0(x — 2)G75 (1), (4.41)

ZThere is an order of limits issue when evaluating f(E) at E = 1 and ¢> = 0. Namely,
limeolimp— f(F) = 2limg—1 lime—o f(E) = 1. Since Ep = 1 for all ¢, the n = 0 term in (4.38) is
to be evaluated at £ = 1 before we take ¢ — 0.
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where (b — 2)0(a — x) is 1 if a < 2 < b and 0 otherwise and G{ () denotes the series
representation of G1(x) on the interval I C R. Explicitly, we have

(—ooO (01 Enf
G =X i XEn+1’ G =x*>_ f(En 1 (4.42)

nGZ neL

G(l 2) ¥ Z Jx—1)E1 G 2 ,00) 2 Z 7(E ) (4.43)

E,+1°
nez nez X 1) "

From the discussion around figure 2, one would expect Gy to behave piecewise on y €
(—00,0), x € (0,1) and x € (1,00). The apparently special role of x = 2 in (4.41) is an
artifact of the series representation. In particular, while the series representations Ggl’m (x)
and G?’OO) (x) do not converge at x = 2, the integral representation in (4.36) is perfectly
smooth at xy = 2.26 This is related to the convergence of the OPE as we will discuss shortly.

Finally, we comment on how (2.30) is consistent with G;(x) — 1 as x — 0, which is
imposed by the OPE limit in which the two light operators (or the two heavy operators)
approach each other (in this limit, the leading exchanged operator is the identity). As
x — 0, the exponentially damping term in (2.30) is turned off and the series diverges due
to the “infinite tail” consisting of terms with arbitrarily large values of n. The contribution
of the tail is captured by an integral over E weighted by the energy density p(F). Since
large values of E' dominate, we may replace the energy density and form factor by their

asymptotic forms: p(FE) ~ %‘9), f(E) ~ %@. Thus, as x — 0,

Zf(En)e_E"“Og(l_X)'N/ zp(E)f(E)e—E\X|dE~/ Ee—E‘deEwiQ, (4.44)
EcutoH Ecutoff X

ne’l

where the leading behavior does not depend on the precise value of Ecytonr > 1. Eq. (4.44)
combines with the prefactor x?/|1 — x| ~ x? in (2.30) to yield G1(x) ~ 1, as desired. The
key input in this reasoning is the fact that 2p(E)f(E) ~ E asymptotically for large E.
Likewise, G4(x) — 1 follows from (2.31) and 2p(E)f(E)(E? — 1)/6 ~ E3/6 asymptotically.
Our argument is similar in spirit to the general analysis in [54] of how the consistency of
the OPE in different channels constrains its large dimension asymptotics in a 1d CFT.

Convergence of the series representation. The divergence of the series in (4.42)—
(4.43) at x = 2 can be understood in terms of the limited radius of convergence of the
OPE in a CFT. We recall that the product of two operators O;(s1) and Oz(s2) can be
written as a convergent sum over primaries at a point s only if there exists a sphere centered
on s that contains O1(s1) and O2(s2) and no other operators (see, e.g., [66, 67]). As we
discuss in greater detail in section 5, the series representations of G1(x) are essentially
conformal block expansions of the four-point function in the light-heavy channel, expanded
around the insertion point of the heavy operator. To illustrate concretely how this is related
0 (4.42)—(4.43), let us use the conformal symmetry to set ¢; = 1, t3 = 0 and ¢4 = oo, in
which case 1 — x = t3. Then, Gg—oo,O) (x) and ng’oo) (x) are sums over positive powers of
1/t5 and correspond to taking the OPE of ®(t2) with Z”(c0) centered at oo, while Ggo’l)(x)

26This is analogous to the fact that ZZOZO " diverges, whereas ﬁ is perfectly smooth, at x = —1.
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and Ggm) (x) are sums over positive powers of t9 and correspond to taking the OPE of
®(t2) with Z7(0) centered at 0. Note that a zero-sphere (i.e., two points) centered at 0 and
enclosing only ®(t3) and Z7(0) exists only if |ta| < 1 because the sphere would otherwise
also enclose ®(1). Likewise, a zero-sphere centered at co and enclosing only ®(¢2) and
Z7(00) exists only if |ta| > 1. Therefore the OPE is indeed expected to diverge at to = 1, —1
or x =0,2.

We can comment a little more concretely about the analyticity of the four-point
functions and the convergence of their series representations. The convergence of each of
the series in (4.42) and (4.43) is determined by the growth of E,, with n. For ¢ € (0,1),
the energy density p(F) is sharply peaked at E = 1 and flattens out as E increases. More
precisely, p(E) ~ constant//E — 1 near E = 1,27 and p(E) ~ %62) + O(1/E?) for large
E, from which it follows that FE,, ~ mw + O(|n|°) for large |n|. The asymptotically
linear growth of E,, with |n| means that each GI(x) converges absolutely and is analytic
on a subset of the complex plane that includes the real interval 1.2® Because the terms
in the series consist of non-integer powers of 1 — x, the series are multi-valued and the
principal sheet should be defined with a branch cut. For example, Ggfoo’o) (x) converges
for all x € C such that |y — 1| > 1 with a natural choice of branch-cut being the interval

X € (2, 00); GEQ’OO)(X) converges for all |[x — 1| > 1 with branch-cut x € (—o0,0); Ggo’l)(x)

converges for all 0 < |y — 1] < 1 with branch-cut y € (1,2); and Ggl’m (x) converges for all
0 < |x — 1] < 1 with branch-cut x € (0, 1).

Each series in (4.42) and (4.43) can be analytically continued beyond its domain of
convergence. In particular, the integral in (4.36) provides the maximal extension of Ggl’g)
and G(2°°) and smoothly stitches together their disjoint domains of convergence, which lie
inside and outside the unit disk centered at y = 1. Meanwhile, the analytic continuation
of Ggfoo’o) and Ggo’l) yields two additional distinct multi-valued functions on the complex
x plane. These observations are in accordance with the general behavior discussed in
section 2.1. Similar comments apply to the series expressions for G, 7, G, and G4, which

we turn to in section 4.2.2 and 4.3.

4.2.2 Computing G,; and G;, from G,

Next, we determine integral and series representations of the defect four-point functions
in (2.20)-(2.21), in which the light insertions are Z and Z. According to (3.45)—(3.46),
the leading contribution in the large charge expansion is given by the classical vertex
operators in (3.47) and the first subleading correction is determined by the boundary-to-
boundary propagators Wyg and Wy,. One could try to solve for these boundary-to-boundary
propagators in the same way that we solved for W,,. This approach is more cumbersome

for the # and ¢ propagators than for the y propagators — both because mg o 18 less simple

2
vy

can nonetheless make progress working perturbatively in small ¢?, as we demonstrate in

than m2 and because the Green’s equations solved by Ggg and G 49 are coupled — but one

appendix C.

" Explicitly, p(E) ~ gwﬁ near £ = 1.

28 Absolute convergence follows from the ratio test and analyticity follows from applying Morera’s theorem.
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To determine the subleading corrections to G,z (x) and G;,(x) (which are equivalent to
Wpe and Wpyy) for general 2, we will instead make use of the superconformal Ward identities.
The general solutions to the first order differential equations (2.26) can be written as

X2 X 1 dGy

Ga(x) = [ <C2(Xo) + . dx (w - 1> . ) (4.45)
_ 2 X ld

G3(x) = x (CS(XO) de i > (4.46)

After integrating by parts (with Co(xo) and C5(xo) absorbing the boundary terms) and
converting from G, Gz to G5, G5, using (2.23), this becomes:

i e Gl(x)] : (4.47)

Gyz(x) = % [CQ<XO) +

()

22

Gz700) = x* {030(0)4- 1;2XG1(><)— : da G;( )}. (4.48)

The remaining integrals in (4.47) and (4.48) are easy to evaluate when G; is expressed
using the integral representation in (4.36) or the series representations in (4.42)—(4.43).

Let’s first determine the series representations of G, and G;,. Because the series
representations of G1 are defined piecewise, we will likewise consider the four cases, x €
(—=00,0), (0,1), (1,2) and (2,00) separately. We pick xo = oo when x € (—00,0) or
X € (2,00) and xo = 1 when x € (0,1) or x € (1,2). Since G1(x) is finite as x — oo or
X — 1 (see (4.42)—(4.43)), it follows that for these values of x¢ the integration constants
can be written

Cy(xo) = lim O=xrq Cs(xo) = lim iG (4.49)
X—=xo  x2 z2 07 oo x2 27

Furthermore, the limits y — 1 and y — oo correspond to Z and Z becoming coincident
with Z7 and Z7 in (2.20) and (2.21), which means that Co(xo) and C3(xo) can be expressed
in terms of certain normalized OPE coefficients.

In particular, the primary of lowest conformal dimension in the OPE of Z and Z”7 (resp.
Z and Z7) is Z7*! (Z7*1) and the primary of lowest conformal dimension in the OPE of
Z and Z7 (Z and Z”7) is Z7~1 (Z7~'). Thus, the leading contributions to the OPE of Z
and Z7 and of Z and Z” are

C J7J
2070 S 2
Z Z

Z(t)ZJ<t/) -~ Czz2027-1 1

NZJ—lzJ—1 (t — t/)Q ZJ_l<t/) (4.50)

as t — t/, with subleading terms suppressed by positive powers of ¢t — t'. The relatlons with
Z < Z s1m11arly hold. Then, sending t; — t3 and t3 — t4, in which case y ~ t13 t24,

t1 — t4 and to — t3, in which case 1 — x ~ %, in (2.20)—(2.21) and applying the OPEs
n (4.50), we find the following four limiting values of G,7and G :

' ' T Crpizis1Ciza i

lim G, = lim G = 2722 EEL 4.51

¥—+00 22(X) X1 zz(X) 49 Nyiv1500N 4054 ( )
) G» (X) . T Crr170-1Cu 00701

lim ~ZZX — i (1 — x)2Gy5(x) = —— 22221122207 452

Jim SIS — lim (1= x)°Gyp () = SFEEEE L (45)
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Since the normalized OPE coefficient in (4.52) is equal to the one in (4.51) up to a unit
shift in the large charge, it is useful to note that c¢*(J — 1) = ¢*(J) — dcng) + 0(1/4?)

and dc (J) 2;]}3(002) which follows from (2.10). Meanwhile, the OPE coefficient in (4.51)
was determmed previously in [41] and is given in (2.12). Consequently, the constants of

integration in (4.49) with yo = 1 and xo = oo simplify to

71— c?

Ca(00) = C5(1) = gne® +

EE) Cy(1) = C3(00) = gmc?. (4.53)

Substituting the appropriate series expression for G from (4.42)—(4.43) and (4.53) for
Cy and C3 in (4.47)—(4.48) determines G5 and G, for any x. For x € (0,2), we find

2
gre*x? yrtl En =1 (B, -1)10g 1]
G,(x) = sgn (1 —x f(E,)————e \'m Xl (4.54
ZZ( ) (1_ ) |1_X|7;Z ( ) E, ( )
G0 = (gm + TLE) 2 (4.55)

2
By +1
+ X S sgn (1 — )" () S e (Bnr oz il
|1 - X| nez En

For x € (—00,0) U (2,00), we find

Gzz(X) = <g7rc + 2 E(c2)> (1—x)2 (4.56)
’ n E,+1 _ B
fx, > sen (1 )" J(EB) = e (Bnt1)]log [1-x]|

2 E, —1
Gy(x) = gre®X* + [ 2 Al Z sgn (1 — )" f(En)nTe_(E"_l)lbg'l_xn- (4.57)
—x| & N

One readily checks that (4.54)—(4.55) and (4.56)—(4.57) satisfy the crossing condition
n (2.24).

We can also determine the integral representations of G, ; and Gz, by applying (4.47)—

2

(4.48) and substituting (4.36) for G1(x) = %Wyy(tl,tg). We find

+/ YT — &+ k2 [k cos(klog(x — 1)) + sin(klog(x ~ 1))]] (4.58)
2v/1 + kZsinh (2 I déﬁ%)

71— c?

g7rc +4E( )

Gz (x) = X

V1—c2+ k2 [—kcos(klog(x — 1)) — sin(klog(x — 1
[ cos(klogx = 1) —sinlklog = )] (5
2VT+ K2 sinh (2 [ de O )

— 36 —



Because [ cos(ak)f(k)dk — 0 as a — +oo and [0 %f(k) — sgn(a)rf(0) a

a — £oo for a smooth function f(k), the integrals in (4.58) and (4.59) approach — ZIE(CC;) and

LlE(CQ) as x — 1 and approach 7 Ila(ccg) and —7 113(02) as x — 0o, respectively. Therefore, (4.58)

and (4.59) reproduce (4.51)—(4.52), as required by the OPE limit.

4.3 Computing Wy,

Finally, we implement the general analysis from section 4.1 to find the boundary-to-boundary
propagator W,,. Via (3.40) and (2.22), this determines the leading large charge behavior
of defect correlators (DDZ7Z7) / (Z7 Z7) or, equivalently, G4(x). The computation of W,
is very similar to that of W,,. We will therefore suppress some of the details and will use
tildes to distinguish between parallel quantities.

We begin by rewriting (4.10) in terms of the new variable & = ir. Using the identity
in (A.16) to simplify the result, we find:

2 o1 24+ k% —¢2 .
g (ol )| @) - () GGk, (4.60)

—9?
a 1—¢2

This is also in the Jacobi form of the Lamé equation given in (A.29) if we identify the
parameter, m, and the eigenvalue, A, to be:

]. A 2+k2—62
1—¢?’ 1—c2

(4.61)

m=

It is again useful to introduce the following shorthand:

R =K < ! ) — VIZE(K(1 - @) — iK(c2)), (4.62)

1—¢2

K =K ( ZCi 1) =1 - 2K(c). (4.63)

C

The second way of writing K and K’ follows from (A.3)—(A.4) and makes it clear that K’
and K + iK' are positive real numbers.

As the coordinate r runs from —r,, to r,,, the coordinate & runs from 5_ = —iK’ to
&, = iK' along the imaginary axis. Its behavior near the end points follows from (4.5):

G~ G+ F2V1—c2eTP, as p — +oo. (4.64)

Having recognized (4.60) as the Jacobi form of the Lamé equation with the identification
n (4.61), we identify two linearly independent solutions to be

z H(£5 +a|m) z5za0m).

f+(6;8) = oG ) (4.65)

Here, & is related to k by

= —isn (&|m) . (4.66)
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(a) Periodicity of unit cells in & plane (b) Image of & unit cells in k plane

Figure 9. The Jacobi elliptic function relating k& and & in (4.66) is doubly periodic, satisfying
sn(a + 2K + 2iK'|m) = —sn (@|m), sn (& + 2iK'|/m) = sn (a|m), as well as sn (—a|m) = —sn (&|m).
Thus, the unit cells in the & plane are arranged as shown in (a). Each grouping of four neighboring
tiles labelled ‘Q’, ‘P’, ‘R’ and ‘S’, which are the pre-images of the four quadrants in the k plane as
shown in (b), is one unit cell. The intervals (—oo, 0) and (0, 00) on the real axis and (0,1 — ¢23),
(V1 —¢c?i,1) and (i,+00i) in the k plane are indicated in (b) using black, blue, red and purple
directed line segments, respectively. Their pre-images in the & plane are likewise indicated in (a).

Because of the double-periodicity of sn (&|m), the @-plane is an infinite cover of the k
plane. See figure 9. We take the fundamental unit cell to be the rectangle with vertices at
a=-K-2iK,a=-K,a=K+2iK/, and @ = K. In particular, the pre-images of the
real and positive imaginary axes are: as k runs from —oo to oo along the real axis a runs
from —iK’ to iK' along the imaginary axis; as k runs from 0 to v/1 — ¢2i to i to +ico along
the imaginary axis, & runs along the line segments from 0 to —K — iK' to —K to iK'

Next, we determine gfm/ L as linear combinations of fi. We cannot replicate (4.25)
and (4.26) because O(6+|m) = 0. Instead, the appropriate linear combinations are

. 1 [ HG+E) (5. sypam  HGHER) s mams ]
R (56) = (G4-a)26m) _ (=0+AM) 65 )z@m)| oy
92(%38) = 551 {H(&Jﬁ—d\m)e H(—6,+ajm)" , (467)
. 1 [ H(=6+4am) 5 s vpam  HEHER) 6 sz }
L (5:8) = (5-5-)2(alm) _ (6--o)z@m] (4
922(7:0) = 55T [H(—&_er]m)e H(o_+a|m)" - (468)

Let us check that these indeed satisfy the boundary condition ¢g%,.(5,&) — 0 as & — &4 (and
therefore also g~ .(5,a) — 0 as & — 6_). We note the behavior of ©(&|m) near & = 7,

o) = 2=, ( ,q) (6—64)+ 0@ —64)% (4.69)
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where 7 = & and § = €. Furthermore, © is related to H after a translation by +iK’:

. , ir (. iK -
H(¢ +iK'|m) = tiexp :Fﬁ g+ > ©(a|m). (4.70)
This allows us to express the n-fold derivatives of H translated by half-periods (i.e., H (n) / H
evaluated at & 4 iK’) as sums of the lower derivatives of © (i.e., (™) /0 evaluated at & for
0 < m < n). Recalling also that Z = ©'/0, we ultimately find

2K 1 0" (alm)  30"(alm )
9ra(5:6) = 0, (%.9) [@(&ym) O(alm)

X (6 —64)2+0(6 —64)°
_ 2K 1
T 3 94 (w q)

This reproduces the expected behavior in (4.12).

Z(alm) + 223 (alm)
Z"(@am)(6 —64)* +0(6 —64)% (4.71)

Thus, sending ¢Z,(5;a) and g%, (5; &) to opposite boundaries yields

8K 1-¢
lim gl (5;a) = lim e ?Pgl (5;a) = ¢

———— _7"(alm). 4.72
P00 p—r—00 31 0, (%’qj (alm) ( )

Furthermore, the normalization can be simplified to
-1
. d R O' ~
! (2 9:(%:0) R () a)) (4.73)
i0(0[m)2e % H(alm)? . -
- ( Z(d%))) ,

O(alm)?
where we used the fact that a,,(&) is independent of & to evaluate the Wronskian at & = 0.
Using % = —ijen (&[m) dn (&@]m) (note (4.66) and (A.13)) and (A.36)—(A.38) to express
various combinations of the theta functions in terms of the Jacobi elliptic functions, we may

(V(a]m) — Z(alm)) sinh (g{a

write the boundary limit of the bulk-to-bulk propagators as the following integral:

/ 4\/1 —c2
Jim %2 Goy(p, 73/, 7) = I ia [exp (sn (@) |7 —7'|) (4.74)
' ——o00 —iR!
. sn(a]m) cn? (&)m) dn? (d|m)]
sinh ( (@) 7
where
Fa) = Z?I"{“ Z(&|m). (4.75)

29To simplify the factors independent of & in front of the integral, we used 125{ 0,9‘; (WOTQ()J) imt = 1, which

can be deduced from various identities in Ch. 1 of [68].
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This is equivalent to (4.16) except with a different parametrization of the integration
variable.

The next step is to close the contour in (4.74). The image of the contour in the k
plane can be closed in the upper-half plane at infinity. The lift to the & plane, shown in
figure 10(a)., is not closed, but we can again use the periodicity of the map from & to & to
write (4.30) as one half of the integral over the closed contour shown in figure 10(b).

The poles of the integrand in (4.74) that lie inside the closed contour are the zeros
of sinh(F(&)) that lie on the line segment between iK' and —2K — iK' (see figure 10(c)),
which we denote by &,, n € Z and which satisfy

F(a,) = (n — 1)mi. (4.76)

Here, we choose to define &, by setting F(&,) equal to (n — 1)mi instead of equal to nmi
because it is then possible to relate @, to «, by a linear transformation independent of
n. In particular, we checked numerically that the following identity relating F'(z) defined
in (4.31) and F'(z) defined in (4.75) appears to hold:

F(iK'z) - F (—K — (R + iK')z) = i, Vz € C. (4.77)
Combined with (4.32) and (4.76), this identity implies that «,, and &, are related by

an dn—i—]f{
iK' K4+iK’

(4.78)

Namely, the positions of the poles in (4.30) along the line segment between —iK’ and /K’ in

the « plane are equal to the positions of the poles of (4.74) along the line segment between

—9K — iK' and iK’ in the & plane, as measured in units in which the two line segments have

unit lengths. This can be also been seen qualitatively by comparing figure 10 with figure 8.
As a consequence of (4.78), the quasi-energies defined in (4.37) are also equal to®"

E, = —sn (ay|m) . (4.79)
Again using (4.33) to evaluate the residues of (4.74) at &,, we arrive at

plLIglo eZP*zple(p,T; 0,7 (4.80)

p'——oc0

W@ & sn(gli) en? (g ) dn? (@) exp (sn () |7 — ')
= o2 o) |

n=—0oo

Using the identity in (A.37), we can write the derivative of Z(&)|m), and thus F'(&), in
terms of the Jacobi elliptic functions. Using (A.3)—(A.6) to write K, K’ and E(ﬁ) in
terms of K(c?) and E(c?), we find

2iE(c?)
Vi

30This follows from substituting the expression for v, in terms of &, from (4.78) into (4.37), noting that

F'(2) = 2iV1 — 2K(c?) (dn (z]m) — 1) + (4.81)

K'ﬂl’ékl V1= and using (A.21)—(A.23) and (A.18)—(A.20) to simplify the result.

= = s
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Figure 10. Closing the integration contour in (4.74) and picking up the residues in the & plane.
The integration contour along the real axis in the & plane can be closed in the usual way at infinity in
the upper half-plane. The lift of the closed contour to the « plane via the map in (4.66) is depicted
in (a) and is not closed. Using the periodic identification of the & plane as depicted in figure 9, the
contour in (a) can be closed as in (b) at the cost of doubling the integral. We can then pick up the
residues at the poles on the interval [—2K — iK', iK'] parallel to the real axis, as depicted in (c).

Eq. (4.74) is the final integral representation and (4.80), supplemented with (4.76), is the
final series representation for the boundary limit of G, expressed in terms of the & variables.
It is again more transparent to express both in terms of the original k variables.

We first rewrite (4.74). F' can be written as a function of k using (k) = fok dk’%%

and noting (4.81). Using (4.66) and (A.16)—(A.17), all of the elliptic functions can be
expressed in terms of k. Ultimately, we find

+ k21 — 2 + k2 cos(klog(x — 1))

. k K(c2)2+E(c?
sinh (2§ de A A2 )

4
9 X o kvl

This is valid for x > 1.

Finally, we use (A.16)-(A.17) and (4.79) to write all the elliptic functions in (4.80) in
terms of F,,. The boundary-to-boundary propagator simplifies to

129 1 4 E?2 -1
X S sl — ) (B e Eellos X (4.83)

Wa(ti,t2) = — "3
m t4112 (1 - X)2 nez 6

Here f(E) is the same function defined in (2.29). In the above expression, we have again
replaced (—1)™ in (4.80) by sgn(1 — x)" in accordance with the discussion around (4.14)—
(4.15), and the resulting series representation for W, holds for both x > 1 and x < 1. Note
that because Ep = 1, the n = 0 term in the sum is zero. Using G4(x) = %gt‘fng(tl, t2),
this leads to (2.31).
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Remarks about G4(x). Now we make two remarks about the final result for G4(x). We
can check that the four-point function reduces to the two-point function of the displacement
operators when ¢ = 0. In this case the series representation of Wy, (t1,t2) from (4.83)
becomes

4 o0

W 291 X n —(n+1)|log [1-
za(t1,t2) = T =2 E sgn(1 — )" n(n + 1) (n 4 2)e~(FDIel=xll (4 84)
12 X) =3

Given that Y02, n(n? — 1)e ™ = 2sinh™* £ and Y52, (—1)"n(n? — 1)e™* = 2 cosh™ £,
we can explicitly sum the series for x > 1 and x < 1. In both cases, we arrive at the result
12¢g 1

<Da(t1)Db(t2)> = WII(t17t2)5ab = T 5ab- (485)
T ti9
This reproduces the leading behavior of (2.17).

Next, comparing (4.36) and (4.82) or (4.38) and (4.83), one sees that G; and G4 satisfy:

4 2
Ga(x) = —% (3;; +(x = 1)CZ<2> G;(QX). (4.86)

This identity, in analogy with (2.26), should essentially be a Ward identity that relates the
four-point functions in (2.13) and (2.14) that belong to the same superconformal multiplet.

5 Extracting OPE data from the four-point functions

In this section, we extract defect OPE data of operators with large charge from the four-point
defect correlators in (2.13)—(2.14). The analysis in this case is particularly simple because
the series representations of the defect correlators in (2.30)—(2.31) and (4.54)—(4.57) are
already essentially in the form of conformal block expansions, and because the conformal
blocks simplify when some of the operators have large dimensions. For a given four-point
function, each term in the series corresponds to a different exchanged operator, the energies
E,, determine the anomalous dimensions, and the coefficients in the series determine the
OPE coeflicients. We also determine the small and large J behavior of the defect correlators
and the OPE data.

5.1 Extracting OPE data

In a 1d CFT, the conformal block expansion of a four-point function in the 12 — 34 channel
is given by [69]

1 tag \B1TA2 [ty )\ Bsm A
(O01(t1)O2(t2)O3(t3)O4(ta)) = LRy (7541) (t31> (5.1)

X > paxSaFi(A+ Ay — A, A+ Az — Ay, 27 ).
A

Here, we take the order of the operators to be t; < t9 < t3 < t4, in which case 0 < x < 1.
We will restrict our attention to four-point correlators in which OI = O3 and O; = Oy or
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OI = 04 and O; = O3, in which case we may choose a basis of primaries Oy, such that they
satisfy the orthogonality condition <Ok0}2,> & Ogk, and the OPEs in the 12 — 34 channel

take the form 0105 ~ ¥, %%Ok, 0304 ~ 3, %%og The sum over A in (5.1) is
then a sum over the primaries O with A = Ay and pp = CO1OzOkCo3o4o]T€ /NOkO};.

We will study the conformal block expansions of the defect correlators in (2.13)—(2.14) in
the “light-heavy”— “light-heavy” channels, in which case the exchanged operators appearing
in the OPEs of both “light-heavy” pairs of the external operators have large charge and
large conformal dimension. When multiple of the external and exchanged operators have
large conformal dimensions, the conformal blocks simplify. In particular, two asymptotic
expansions of the hypergeometric function that will be useful are

2Fifo 8L +700 = 1+ 2x+0 (23 ). (52)
R+ L0 = oo (142070 w0 (). 69)

The first expansion follows from the series definition o F(a, b, ¢, x) = 1+ %bz—k %224—

.., and is relevant when A = A; + O(1) = Ay + O(1) are large in (5.1). The second
expansion can be found in, e.g., [70] and is relevant when A = Ay + O(1) = Ay + O(1)
are large.

OPE data from (Z7ZZZ’) and (ZZ? ZZ”). Consider the conformal block expansion
of ((e1- ®(t1)) ea - ®(t2)es - ®(t3)(eq - P(4))”7) in the 12 — 34 channel. It decomposes into
three different channels distinguished by the SO(5) irreducible representations (irreps) of
the operators that appear in the OPE of (¢ - ®)” and e - @ (and likewise in the OPE of
€3+ ® and (e4 - ®)7). In terms of Young tableaux, the decomposition of the tensor product
of the rank 1 and rank J symmetric traceless representations into irreps is given by

J
J J+1 —— A —— J—-1

———
el T T T =(T I T e LUefTT T 649

The three SO(5) channels can be disentangled and studied separately using, for instance,
harmonic polynomials of & and ¢.3! However, for simplicity we choose instead to focus on
the four-point correlator (Z7(t1)Z(t2)Z(t3)Z”(t4)), which has only one channel because the
operators appearing in the OPE of Z7 and Z and in the OPE of Z and Z” all transform in

31For instance, for the case J = 1, the harmonic polynomials corresponding to the singlet, antisymmetric,
and rank 2 symmetric traceless representations are [71]: Y = 1, YH ={-CGYm=§+(¢— % We can

therefore write the conformally invariant part of (2.13) as
1 1 1 1
G1+EG3 4+ (G = (G1 + 503 + 5G2) Y + §(G3 +G2)Y 1+ §(G3 - Gz)YH,

and then analyze each channel separately. The conformal block expansion of the three channels of the J =1
correlator was studied in [19].
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the rank J + 1 representation.?? In principle, we do not lose anything with this restriction
because the operators in the three channels are in the same superconformal multiplets, so
their anomalous dimensions are the same and their OPE coefficients are related.

Relabelling 1 — 2 — 3 — 1 in (2.20) and putting the resulting correlator in the form
of (5.1) yields

J+1

_ A4gN 171/ (taotsi 77 x
(2 () 2(t2) 2(0) 27 (1)) = S22 (B )

G (). 69

Here y = U234 a5 in previous sections. Applying (4.56), this may be explicitly written
X ymg Yy y

— tistoa’

> > 49N i 507 (tastz1 7! 2y\ w1l-—¢c?
Z7 (1) Z(t2) Z(t3) Z7 (1)) = ——4-% < > 2(1+) JH1
(Z°(t1)Z(t2) Z(t3) Z" (ta)) t]+1tj_|_]_ t?ﬂ gme 7 2 E(c2) X

+Z2f Entl a1, 001/g)]. (5.6)

Here, we have combined the n= 0 term in the sum in (4.56) with the term outside the sum
(and recalled that f(1) = g’ff ) and also combined the —n and n terms.

Eq. (5.6) is in the form of a conformal block expansion. Let us denote the primaries
appearing in the OPE of Z/ and Z by [Z7Z],,, the operators appearing in the OPE of Z and
77 by [ZZ7),, and their dimension by A,,. Here n = 0,1,2... is (for the moment) simply
a label to distinguish the different operators, ordered by increasing conformal dimension.
For instance, the lowest primaries are [Z7Z]g = Z/*! and [ZZ7]p = Z/*!. We take the
primaries to satisfy [Z7 Z|l = [Z2Z”],, and ([ZZ7),]ZZ7]) S

We can now read off the OPE data of [Z7Z], and [ZZ”], by matching (5.6) to the
general form of the conformal block expansion of (Z/ZZZ”7) given in (5.1). Identifying
Ay =As=J, Ay =A3=1and A = A, and simplifying the conformal blocks using (5.2)
with the identification a = f = A, +1—J, v =2(A,, — J) and L = 2J, we arrive at

1 (t42t31>‘]_1 > CZJZ[ZJZ]HCZZJ[ZZJ]n An

(Z7(t1)Z(t2) Z (t3) Z7 (t4)) = A (5.7)
to) 'ty th

= Nziz.zz,

x (1+WX+O(1/92)>.

We can now compare (5.7) with (5.6) term-by-term, and read off the OPE data. To
normalize the OPE coefficients by the norms of each of the operators, we note N, =
479 (1 — % + .. .), which follows from (2.17)—(2.18). Then, for the lowest operator, we find

’CZJzzJJrl ‘2 2 T 1 — C2 302

Ao=J+1, Bt oW 69

NZZNZJZJNZJ+1ZJ+1

32This follows from the fact that Z7(£1)Z(t2) — €'YtV Z7(4,)Z(t2) under the rotation ®4 + ids —
eie(@; + i®5). By contrast, the highest weight states in the rank J — 1 symmetric traceless representation
and the mixed representation will transform like Oy vw. — ei(Jfl)aOh‘wl and Oy w. — e“GOh,W,7 respectively.
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This reproduces the OPE data that we used to fix the constants of integration of G,
and G, in section 4.2.2. Meanwhile, the higher terms in the conformal block expansion
produce the new OPE data:

|CZJZ[ZJZ] 2 E,+1
A, =J+1+E,, n —2f(E , 5.9
" " NZZNZJZJ'N-[ZZJ]n[ZZJ]n f( n) En ( )
where n =1,2,3,.... In (5.8) and (5.9), we used C; 31727, = J*ZJZ[ZJZ]H, which follows

from reflection positivity of the dCFT. Because the simplified form of the conformal
block in (5.2) is valid when «, 3,7 < L, the OPE data in (5.9) is reliable as long as
A, —J < J ~ /. In the strict large charge limit, where the charge J and string tension ‘2/—75
are taken to infinity, (5.9) gives the OPE data of an infinite tower of non-protected operators.

As a non-trivial check, we can also extract OPE data from (Z(t1)Z7 (t2)Z(t3)Z” (t4)),
in which we switch the relative order of Z and Z”7. Relabelling 1 <+ 2 in (2.20), writing the

correlator explicitly using (4.56), and putting it in the form of (5.1), we get

_ _ 4g/\/ 5 /7T t4o 1-J _
(Z(t1)Z7 (ta) Z(t3) 27 (t4)) = % () G, (x7Y), (5.10)
to g J1-x/)  2E(?) ) (1-x)?

+0(1/9g)

S0yt Bt 1) T -
n=1

En (1_X)En+2

We want to match (5.11) to the general form of the conformal block expansion in (5.1).
We again denote the primaries appearing in the OPE of Z and Z” by [Z227), = [Z27Z],
and in the OPE of Z and Z”7 by [ZZJ]n Then, identifying Ay = Az =1, Ao = Ay =J
and A = A,, in (5.1), which allows us to simplify the conformal blocks using (5.3) if we set
L=2J,a=A,—-1-J,8=A,+1—J,v=2(A, —J), we may write

o 1 tio ' & Cz291229,C221(227) N
Z(t1)Z7 (t2) Z(t3)Z7 (t4 :() i
(Z(t1)Z7 (t2)Z (t3) Z7 (t4)) T 2T N gz, (= )T
(An + 1- J)2 X 2
x [1- Lo . 5.12
( 57 T (1/9%) (5.12)

We can now compare (5.12) with (5.11) term-by-term. For the lowest operator, we find

C Css,5 1—¢* 3¢
277 z7+1C 779 7741 :ng+E ¢ _|_i_|_0(1/g). (5.13)

Ag=J+1,
" NzzNgiziNgivizon 2 E(c?) 8

For the higher terms in the conformal block expansion, we find

nt+1 2f (En) (Ep +1)
En

CZZJ[ZZJ]nCZZJ[ZZJ]n

Ap=J+1+E,

= (-1) . (5.14)

NZZNZJZJMZZJ]n[ZZJ]n

forn=1,2,3,.... Egs. (5.13)-(5.14) match (5.8)-(5.9) as long as Cz (777, = Cz7 71227,
and Cyzzi(777, = (—1)n+1CZJz[ZzJ]n, for n = 1,2,.... This is a consequence of parity,
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assuming [Z 1z ]n is odd for n = 2,4, ... and even otherwise. These parities of the exchanged
operators are consistent with the observation that in the generalized free field limit (i.e.,
g — 00, which can be probed via the J/g — 0 limit of the large charge results) composite
primaries can be constructed out of J + 1 copies of Z and 0,2, 3,4,... derivatives (thus, the
operators [ZZ”], for n > 0 contain n + 1 derivatives), but no primary can be constructed
using a single derivative because Z70Z ~ 0Z7%! is a descendent. See appendix D.2 for
more details.

The OPE data derived in this section come with a caveat. When extracting OPE data
from the conformal block expansion of a four-point function, if one does not make sure to
disentangle the contributions of operators with the same quantum numbers, the extracted
OPE data will in general be averages over the degenerate operators.?® Therefore, on general
grounds we would expect the OPE data in (5.9) and (5.14) to be “mixing-averaged.” On
the other hand, since we can precisely match the series representations of the four-point
functions to the conformal block expansion, it is possible that the operator mixing is not
relevant in the large charge limit. It would be good to understand this issue better.

5.2 Defect correlators and OPE data at small and large J

In this section we examine the small J and large [J behavior of the defect correlators
derived in section 4 and of the OPE data derived in section 5.1.

Small J. We first consider the defect correlators in the regime 1 < J < g, in which
case J is small. The series in (2.30)—(2.31) and (4.54)—(4.57) allow us to determine with
minimal effort the small ¢? expansions of the defect correlators, which can be converted to
small J expansions using the Taylor series relating J and ¢? in this regime:

3rct 15mcd

. 3
8 64

9
J =mc” + 613

+0(c), cgzlj—%j% j3+0(j4). (5.15)
s 8

We begin by determining the behavior of E, when ¢? is small. Qualitatively, the
FE, will be spaced approximately uniformly with unit separation, and deviations will be
small in ¢? as long as |n| is not too large. We can make this precise by determining the
expansion of E, as a series in ¢?. Recall that Ey = 1 exactly for all c. Meanwhile, the
divergence of p(F) in (2.28) at £ = 1 makes determining the series expansion of E,, for
n # 0 directly from (2.27) a bit subtle, because naively expanding p(FE) in small ¢? and then
integrating from 1 to E,, order by order yields divergent integrals at each order. Therefore,
we rewrite (2.27) in terms of an integral that runs from E,, to infinity, instead of from 1 to

33Indeed, part of the motivation to focus on the (ZZ7ZZ”) correlator instead of the other scalar correlators
is to reduce this issue of “operator mixing.” As discussed in [19] in the analysis of the J = 1 four-point
functions, at leading order in 1/g the operators on the Wilson line behave like generalized free fields, and
there is a unique composite primary transforming in the rank 2 symmetric traceless representation that
can be constructed out of two copies of the elementary scalar field and a given even number of derivatives.
Moreover, this composite operator does not mix with any other operators. However, as we discuss in
appendix D.2, for J > 1 there are multiple composite primaries transforming in the rank J + 1 symmetric
traceless representation that can be constructed out of J 4 1 copies of the elementary scalar field and a
given number of derivatives, if the number of derivatives is sufficiently large.
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E,,, in order to avoid the problematic point E = 1:34

En—/ool E? —E(?)/K(c?) g

En |[VE? —1VE? + 2 -1 2K (c2) (14 [nl)- (5.16)

For fixed E, > 1, it is now safe to expand the integrand in small ¢? and then integrate
order by order, which yields rational functions of E,, at each order. Writing E,, =1+ |n| +
E,(Ll)c2 + Er(?)c4 + E,(f’)c6 + ..., we can then determine the Er(f) by matching powers of 2 on
both sides of (5.16). We ultimately find

Eo =1, (5.17)
n|+1 5 (| +1)(5n2 +10[n| — 4) ,
E, =1 _ _
+ 1l 1 ¢ 64[n[(|n] + 2) ¢
(In| + 1)(11n? 4 22|n| — 12) 4
_ 0 5.18
256(n|(n] + 2) o (n#0) (5.18)

The above series expansion is reliable as long as |n| < 1/c2.

Given the series expansion of E,, it is straightforward to expand the summands in (2.30)—
(2.31) and (4.54)-(4.57) in small ¢? and evaluate the sums order by order. For instance, the
first two terms for the small ¢ expansion of the defect correlators are given explicitly by:

GO0 =1+ (j (—=2+x+ xj) log|1—x|  (2+x(x— 22{(1_—1;; X log X | oy,

(5.19)

Gab) = 2T 4 a0 (- 0 ot x (5.20)
FU =3+ log| + (),

Gs(x) = gne’x* + 4(10_:()2 [x(l — 01 =2x +x%) (5.21)

+ (1= x)*(1 +x +2x%) log |1 — x| + x*(4 — 5x + 2x*) log [x|| + O(ch),

Gilx)=1+¢ [(; — i) log |1 — x| — 1} +0(ch). (5.22)

Using the same procedure, it is relatively easy to determine the first few higher order
corrections to the defect correlators. Instead of providing explicit expressions, we summarize
the type of functions that appear in the expansion up to order ¢!, which may potentially
be useful if one were to try to identify a suitable ansatz to “bootstrap” these or related
correlators. At order ¢®?, the G;() are sums of products of the polylogarithm function Lis,?>

34To arrive at (5.16), we used the following pair of results

oS} e} 2
/ db =K(1 - %), / E 1 —1|dE=1-E( - ).
L VEZ-1WErT 21 L IVEE=IVER 21

35Recall that rational functions and the logarithm are special cases with polylogarithmic order 0 and 1:
Lio(z) = %5 and Lii(2) = —log(1 — 2).

1
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such that the sum of the polylogarithmic orders of any of the products of polylogarithmic
functions is less than or equal to n. For instance, for the first few terms in the small ¢?
expansion, the combinations of polylogarithms of “highest order” are logarithms at order ¢?,
products of pairs of logarithms at order ¢*, and terms schematically of the form Lis, log -Lis
and log® appearing at order ¢8. However, not every product of polylogarithms “allowed” by
the above rule appears at a given order. For instance, there is no Lis term at ¢*, and no
Lig or Li3 terms at c®.

We can also determine the small J expansion of the OPE data of the operators
exchanged in the light-heavy channel of (ZZ7ZZ”), which were determined for finite J
in (5.13)—(5.14). The first few terms in the expansions of the conformal dimensions are:

Ao =J+1, An:J+(2+n—n;}J+Ouﬂ»+4XUm. (5.23)

The first few terms in the expansions of the OPE coefficients are:

Crz1700:C5557001 < 3 3) (_&7 2> ;
NZZNZJZJNZJ+IZJ+1 =9\J 87rj +O(J7) ) +(1 ST +0(J°) |+0(1/g%) (5.24)
2)(2n—1)
=(—1 n+l (n+2_m
NZZNZJZJMZZJ]H[ZZJ]TL ( )

Cz21221,C227(22),

g j+O(J2)> +0(1/g). (5.25)
In (5.23) and (5.25), n = 1,2,3,.... Note that Ay = Ay + 2 when J = 0, which again
corresponds to the fact that there is no composite primary in the generalized free field
limit constructed out of J + 1 copies of Z and a single derivative (i.e., the n = 1 operator
corresponds in the free limit to a primary built out of Z and Z”/ and two derivatives).

Finally, we note that an alternative approach to probing the defect correlators in the
1 <« J < g regime is to first take J finite and expand in 1/g (which is the usual strong
coupling expansion of the Wilson line dCFT that can be studied using Witten diagrams on
the AdSs dual string), and only then take J to be large. We show in appendix D that the
results of the finite charge analysis match the large charge results in (5.19)—(5.25).

Large J. The other limiting case of the defect correlators that is natural to consider is
the regime 1 < g < J, in which case J is large. The series in (2.30)—(2.31) and (4.54)—
(4.57) allow us to determine the leading behaviors of the defect correlators as J — oo or,
equivalently, ¢> — 1. We note for convenience the asymptotic expansions relating 7 and c?
in this regime:

J = —2log(1 — ¢®) +4(21log2 — 1) + O((1 — ¢?) log(1 — ¢?)), (5.26)
=1~ i—ge_% +0(Je™). (5.27)

We first determine the behavior of the energies, E,,, when J — oco. Because K(c?) — oo
as ¢ — 1, it follows from (2.28) that, in this limit, the E,, condense into a continuum with a
smooth distribution. The density of the F,,, normalized by the large charge, is asymptotically

po(E) 1 FE 2VE*-11 O(e—l)

_—~ — 2

7 ToamVEE-1i x E g

as J — oo. (5.28)
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The fine-grained behavior of the E, when J — oo can also be determined from the above
density. Neglecting the exponentially suppressed term in p(E), which is valid as long as
In| < 7, we can evaluate the integral in (2.27) and the quantization condition becomes

J+4 2 _ _2 2 _ =J/2y —
5 VE2 -1 7Tarctan(\/En 1)+O(e ) =|nl. (5.29)

This lets us determine E,, in various regimes. When |n| < J (i.e., E =~ 1), the E,, may be
expanded in 1/7:

2r?n?  27int  64rint 4nOnS 7
E,=1+ NG + 76 +0(1/J"). (5.30)
When J < |n| < e (ie., E, > 1), the E, may be expanded in 1/|n|:
2 2 -4 4-
m|n| T N J N J
4+J 44T  4rin| 47rn?
Finally, when |n| ~ J (i.e., E, ~ 1), we may write n = nJ and expand in 1/7:

8mn(—2mn + arctan(27n)) 1
En = \/1+4n2n? + — 5.32
" 1 V1 + 4min? J (5.32)

n 8(2mn — arctan(27n))(27n — arctan(27n) + 167373) 1
(1+ dn2y?)2 7"

The leading term in (5.32) precisely matches the expression for the energy of fluctuations

E, = + o1/ nP). (5.31)

0(1/7%).

about the ¢ = 1 string in the BMN limit, which was derived in [8]. In particular, [8] found

that the fluctuations have energies w, = /1 + p? and argued that the boundary conditions

fix the momenta to be p, = % with n € Z. We note that in (5.32), 27y = 2”"9 "\?
We can also study the four-point functions in the limit 7 — oco. The condensatlon of

the E,, into a continuum makes it possible to convert the series representations of the G;(x)
n (2.30)—(2.31) and (4.54)—(4.57) into simple integrals. In particular, we first note that
f(E) in (2.29) asymptotically approaches

TE 4w E?—1
f(E)—>7 2B -I-O( ) as J — 00, (5.33)
and therefore p(E) f(E) — 2\/% is finite in the limit 7 — oo. This is useful because, given

a smooth function g(E), the sum ", o, f(Ern)g(Ey) approaches the integral [ dE\/ETg(E)
as J — 0o. When x < 1 and the terms in the series are all positive, we can apply this to
the series in (2.30) and (2.31) and find

G1(x) ¥ g Eisx)
1(X ]-_X 1 \/T]_
2
:1X Ké’(llog(l—x)l) (5.34)
2 2
i) = / dE E6 L —Plog(1—)|
1 X4 |: K 1"
=" log(1 — — K (|log(1 — . 5.35
6 = 2 |10 (Hos(L = X)) = KG (| log(1 =) (5.35)

— 49 —



Similarly, from the piecewise series representations of G,; and G5, in (4.54)—(4.57), we
also find

2 2 2
] X T [® BT EELl (o)
GG T VT B
2 2
X X
— o e [KE os(1 =0 F Kyl os1 =D |. (530

X’ © B E$1e—(EﬂF1)\log(1—x)|
1-x/1 VE2-1 FE

— gm0 | K ([ log(1 — ) & K5 log(1 D) (5.37)

Gzz(x) = grx* +

where the upper (lower) sign is for y < 0 (0 < x < 1). In these expressions, Ky(z) is the
modified Bessel function of the second kind.

By contrast, when x > 1, the series become alternating and vanish in the continuum
limit.26 Thus, we find the following simplified asymptotic behavior as J — oc:

2
G1(x), Ga(x) = 0, Gzz<x>%gw(1f—x)2, Gry(0) = gmx%  (5.38)

These can also be seen from the fact that the sinh term in the integrands in (4.36), (4.58)—
(4.59) and (4.84) diverges as ¢? — 1.

Finally, we note the large J expansion of the OPE data of the operators exchanged in
the light-heavy channel of (ZZ7ZZ”), which were determined for finite 7 in (5.13)(5.14).
The leading terms in the expansions of the conformal dimensions are:

A= J+1, An=J+ (1 1+ a2 + O(l/j)) +0(1/g). (5.39)

The leading terms in the expansions of the OPE coefficients are:

Crri70+1C555 7041 7 (3 s >
=gm{1+0 10 o 5.40
NzzNziziNgiwizim gﬂ( + (e ’ )) g™ (e 2) +0(1/g) (5.40)

CZZJ[ZZJ] CZZJ[ZZJ] 2m
n n :-1”“((1 \/1 422> O(1 2) O(1/g). (5.41
NZZNZJZ‘]‘/\/[ZZ‘I]"[ZZJ],L ( ) j + + T 77 + ( /j) + ( /g) ( )

Eq. (5.39) and (5.41) are valid for n =n/J ~ 1.

Having determined exact expressions for the energies and the four-point functions
(which can be evaluated numerically with relative ease), as well as simplified analytic results
when J is small or large, we close this section by summarizing our findings in a series

36The different behavior of the J — oo limit of the G;(x) for x < 1 and x > 1 is analogous to the following
simple example: given a normalizable, smooth function g : R — R (e.g., g(z) = 6712), the normalized sum
of g evaluated at uniformly spaced points separated by 1/N approaches either the integral of g over R or
zero as N — oo depending on whether the sum is alternating:

dm 530 () = [ atwrte Jm 5 v (5) <o

nez nez
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------ Numerical
— Small # expansion

— Large # expansion

Figure 11. E, is plotted for n =0,1,2,...,9 and J € [0,20]. The red dashed curves depict the
numerical values of E,, computed using (2.27). The blue curves depict the small ¢? expansion given
in (5.18). The black curves depict the large J expansion given in (5.32).

of figures. Figure 11 illustrates the dependence of the first few energies E, on J. We
include the exact results evaluated numerically via the quantization condition (2.27), and
compare them with the small ¢? expansion in (5.18) and the large J expansion in (5.32).
Furthermore, figures 12-14 depict G1(x), G;7(x), and G4(x) for representative values of
%, combining the simple analytic results for ¢ = 0 given in (5.19)—(5.22) and for ¢? = 1
given in (5.34)—(5.38) with the numerical implementation of the series representations given
in (2.30)-(2.31) and (4.54)—(4.57).

6 Connections to integrability

We now show that the results obtained in section 4 can be interpreted naturally in terms of
the (semi-)classical integrability of the string sigma model.

6.1 Classical integrability, spectral curve, and quasi-momentum

Let us first give a lightening review of the classical integrability of the closed string. For
more details, we refer the readers to the original papers [51-53] or a review [72].

Spectral curve, quasi-momenta. The Green-Schwarz string sigma model on AdS5 x S°
is known to be classically integrable. The simplest way to see it is to recast its equations of
motion into the flatness of the Lax connection, which takes the following schematic form

05 — Jo,0n — J;] =0. (6.1)

Here J, (0, 7|x) is a (4]4) x (4|4) matrix-valued one-form built out of the worldsheet fields,
and it depends on an extra complex parameter x, which we call the spectral parameter.
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—_ 2=0
0.8 — 2=1
‘\‘ -=== ¢?=0.1 (numerical)
0.6 AN 2 i
S -=== ¢2=0.5 (numerical)
---- ¢*=0.9 (humerical)
04
0.2 \
-2 -1 I 1 2 3 4
X

Figure 12. G1(x) is plotted as a function of x for representative values of ¢2. The solid blue curve
depicts G1(x) = 1, corresponding to the edge case ¢* = 0 (i.e., 7 = 0). The solid black curve depicts
G1(x) for the edge case ¢ =1 (i.e., J = 00), given by (5.34) and (5.38). The dashed curves depict
G1(x) for ¢ = 0.1,0.5,0.9, evaluated numerically using the series representation in (2.30) for y < 1
and using the integral representation in (4.36) for y > 1. The numerical results on a small interval
around x = 0 are excluded due to slow convergence of the series. One can also plot G1(x) for y > 1
using the series in (4.36); the resulting curve matches the curve from the integral representation,
but convergence is slow near x = 2.

Gz — Gy
2.0

1.5

=== ¢?=0.1 (numerical)

-=== ¢*=0.5 (numerical)

-=== ¢?=0.9 (numerical)

-2 -1 X 1 2 3 4

Figure 13. The fluctuation component of G, (x) is plotted as a function of x for representative
values of ¢2.
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G4()

=== ¢?=0.1 (numerical)

=== ¢?=0.5 (numerical)

==== ¢2=0.9 (numerical)

-2 -1 X 1 2 3 4

Figure 14. G4(x) is plotted as a function of x for representative values of c2.

Using the Lax connection, one can define a monodromy matriz along a nontrivial contour
on the worldsheet, which is normally taken to be along the o-direction:

21

Qx) = Pexp( ; Jgda) . (6.2)

Thanks to the flatness of the connection (6.1), the trace of the monodromy matrix does not
depend on the local deformation of the contour and is therefore conserved for any value of x.
In particular, when expanded in powers of x, it produces infinitely many conserved charges.

A more systematic way to compute the conserved charges and analyze the integrable
structure is to consider the spectral curve defined by3”

sdet [yl — Q(x)] =0. (6.3)

A standard way to parametrize the curve is to use the quasi-momenta, which are related to
eigenvalues of Q(z) by yi(x) = (), More explicitly we have eight quasi-momenta

Q(z) ~ diag (ez‘m’ elP2 ¢iP3 oiba|eiPL P2 oiPa eim) 7 (6.4)
where p;’s describe the dynamics in AdS; while §,’s describe the dynamics in S°. These eight
quasimomenta together form an eight-sheeted covering of the complex = plane, connected

to each other by branch cuts (or poles®®). The branch cuts connect two of the eight sheets,
and across each branch cut, the quasi-momenta have the following “integer” discontinuities:

pr(x +ie) — py(x —ie) = 2mngy, nry € N. (6.5)

3THere sdet stands for the super-determinant.

38Precisely speaking, the cuts corresponding to fermionic excitations in (6.7) are infinitesimal: namely
they are poles rather than branch cuts. For details, see [53]. Here we are slightly abusing the notations and
calling them “branch cuts”.
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Here I and J belong to the sets

Ie{i,21,2}, J e {3,4,3,4}. (6.6)
As can be seen in (6.5) and (6.6), there are 16 different kinds of branch cuts and they
correspond to eight bosonic and eight fermionic excitations on the worldsheet:

AdSs: (3,7), S°: (4,9), fermions :  (%,7) or (,7). (6.7)

In addition to branch cuts, the quasi-momenta have poles at x = 1 whose residues are
correlated owing to the Virasoro constraints

{os, a4, B, Be|ax, o, By, B4}
r+1 ’

This property plays an important role when determining semi-classical corrections to the

{P1, D2, D3, PalPr P2, P3, Pa} ~ (6.8)

energy as we review below.

The main advantage of using the spectral curve and the quasi-momenta is that one
can classify and construct them directly from their analytic properties without reference to
explicit classical string solutions. Since the quasi-momenta encode all the higher conserved
charges, it allows one to compute the quantum numbers of classical string solutions without
constructing them explicitly. In particular, the global charges of the classical solution can
be read off from the asymptotic behavior of the quasi-momenta at infinity:

P1 +A - 51+ 5

Do +A+ 51— 5

D3 —A— 51 -5

P4 1 —A+ S+ 5 9

5 =gz | 4Tt T Ty +0(1/z%). (6.9)
D2 +J1—Jo+ J3

D3 —J1+Jo+ J3

D4 —J1—Ja—J3

Here S;’s and J;’s are angular momenta in AdSs and S5 respectively. Using this, we can
read off the conformal dimension of the classical solution in the following way:

A= lim gx(p1 + p2) - (6.10)

Semi-classical fluctuations and quasi-energy. Another advantage of the spectral
curve is that it also encodes semi-classical corrections to the energy of classical string
solutions. The details can be found in the original paper [53]; here we sketch the outline of
the derivation.

On the spectral curve, all the excitations on the worldsheet are described by branch cuts.
Thus small perturbations, i.e. semi-classical fluctuations, correspond to adding “infinitesimal
branch cuts” — namely poles — on the spectral curve. These poles also need to obey
the analyticity requirements reviewed above; in particular, they can only be added at x./
satisfying the following “quantization” condition:

pr(@l”y — py(zt) = 27n n € N. (6.11)
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After adding a pole, the quasi-momenta get shifted as px(z) — px(x) + 61 px (x). The
residue of the pole is constrained to be

ofet) 1
@)= a1/

Physically, this constraint guarantees that the perturbation corresponds to adding one unit

M pr(x) ~ + (6.12)

x—axlt’

of quanta® on the worldsheet, rather than a composite of several quanta.

There are several other conditions satisfied by 6//pg which directly follow from the
analyticity requirements of the quasi-momenta: for instance, 5{LJ pr(x) should not modify the
integer discontinuities (6.5) of the existing cuts, and their residues at x = +1 are correlated
to be

{6ot,b0t,60+,08+ 004, 00, 0P+,68+}

6.13
r+1 ( )

{0p1, 62, 6Ps3, 0palop1 Opa, dPs3, 0Pa}t ~

Because of this latter condition, the perturbation 61/ affects all the pg’s, not just p; and py.
In particular, any perturbation backreacts p; and ps, and therefore changes the conformal
dimension A, which is determined by the asymptotics of pi .

In the actual computation, it is often convenient to compute the correction to A in two

steps: first determine the correction to the quasi-momenta induced by the addition of a pole

1J

at an arbitrary position z = y and later impose the quantization condition (6.11) y = z;”.

As a result of the first step, we obtain an expression for §A as a function of the position y:
7 (y) = (5£JA. (6.14)

Here 65‘] denotes a perturbation induced by an addition of a pole at x = y that connects
the I-th and J-th sheets. The function ¢(y) is often called the off-sh