Skip to main content

Global morphogenetic flow is accurately predicted by the spatial distribution of myosin motors.

Author(s): Streichan, Sebastian J; Lefebvre, Matthew F; Noll, Nicholas; Wieschaus, Eric F; Shraiman, Boris I

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1cc65
Abstract: During embryogenesis tissue layers undergo morphogenetic flow rearranging and folding into specific shapes. While developmental biology has identified key genes and local cellular processes, global coordination of tissue remodeling at the organ scale remains unclear. Here, we combine in toto light-sheet microscopy of the Drosophila embryo with quantitative analysis and physical modeling to relate cellular flow with the patterns of force generation during the gastrulation process. We find that the complex spatio-temporal flow pattern can be predicted from the measured meso-scale myosin density and anisotropy using a simple, effective viscous model of the tissue, achieving close to 90% accuracy with one time dependent and two constant parameters. Our analysis uncovers the importance of a) spatial modulation of myosin distribution on the scale of the embryo and b) the non-locality of its effect due to mechanical interaction of cells, demonstrating the need for the global perspective in the study of morphogenetic flow.
Publication Date: 9-Feb-2018
Electronic Publication Date: 9-Feb-2018
Citation: Streichan, Sebastian J., Matthew F. Lefebvre, Nicholas Noll, Eric F. Wieschaus, and Boris I. Shraiman. "Global morphogenetic flow is accurately predicted by the spatial distribution of myosin motors." Elife 7 (2018): e27454.
DOI: doi:10.7554/elife.27454
ISSN: 2050-084X
EISSN: 2050-084X
Pages: e27454 - e27454
Language: eng
Type of Material: Journal Article
Journal/Proceeding Title: eLife
Version: Final published version. This is an open access article.



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.