Skip to main content

Individual Ion Activity Coefficients in Aqueous Electrolytes from Explicit- Water Molecular Dynamics Simulations

Author(s): Saravi, Sina Hassanjani; Panagiotopoulos, Athanassios Z.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1c824d83
Abstract: We compute individual ion activity coefficients (IIACs) in aqueous NaCl, KCl, NaF, and KF solutions from explicit-water molecular dynamics simulations. Free energy changes are obtained from insertion of single ions - accompanied by uniform neutralizing backgrounds - into solution by gradually turning on first Lennard-Jones interactions, followed by Coulombic interactions using Ewald electrostatics. Simulations are performed at multiple system sizes, and all results are extrapolated to the thermodynamic limit, thus eliminating any possible artifacts from the neutralizing backgrounds. Because of controversies associated with measurements of IIACs from electrochemical cells with ion-selective electrodes, the reported experimental data are not widely accepted; thus there remains a knowledge gap with respect to the contributions of individual ions to solution nonidealities. Our results are in good qualitative agreement with these reported measurements, though significantly larger in magnitude. In particular, the relative positioning for the activity coefficients of anions and cations matches the experimental ordering for all four systems. This work establishes a robust thermodynamic framework, without a need to invoke extra hypotheses, that sheds light on the behavior of individual ions and their contributions to nonidealities of aqueous electrolyte solutions.
Publication Date: 28-Jul-2021
Citation: Sina Hassanjani Saravi and Athanassios Z. Panagiotopoulos. Individual Ion Activity Coefficients in Aqueous Electrolytes from Explicit- Water Molecular Dynamics Simulations. The Journal of Physical Chemistry B, 2021, 125 (30), 8511-8521. DOI: 10.1021/acs.jpcb.1c04019
DOI: https://doi.org/10.1021/acs.jpcb.1c04019
Type of Material: Journal Article
Journal/Proceeding Title: Journal of Physical Chemistry B
Version: Author's manuscript
Notes: To comply with the publisher's policy, this document has been put under embargo until July 27, 2022. The author's manuscript and the supplemental materials will be made available then.



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.