Skip to main content

Collective Decision-Making in Ideal Networks: The Speed-Accuracy Tradeoff

Author(s): Srivastava, Vaibhav; Leonard, Naomi Ehrich

To refer to this page use:
Abstract: We study collective decision-making in a model of human groups, with network interactions, performing two alternative choice tasks. We focus on the speed-accuracy tradeoff, i.e., the tradeoff between a quick decision and a reliable decision, for individuals in the network. We model the evidence aggregation process across the network using a coupled drift-diffusion model (DDM) and consider the free response paradigm in which individuals take their time to make the decision. We develop a reduced DDM as a decoupled approximation to the coupled DDM and characterize its efficiency. We determine high probability bounds on the error rate and the expected decision time for the reduced DDM. We show the effect of the decision-maker's location in the network on their decision-making performance under several threshold selection criteria. Finally, we extend the coupled DDM to the coupled Ornstein-Uhlenbeck model for decision-making in two alternative choice tasks with recency effects, and to the coupled race model for decision-making in multiple alternative choice tasks.
Publication Date: Mar-2014
Citation: Srivastava, Vaibhav, Leonard, Naomi Ehrich. (2014). Collective Decision-Making in Ideal Networks: The Speed-Accuracy Tradeoff. IEEE Transactions on Control of Network Systems, 1 (1), 121 - 132. doi:10.1109/TCNS.2014.2310271
DOI: doi:10.1109/TCNS.2014.2310271
EISSN: 2325-5870
Pages: 121 - 132
Type of Material: Journal Article
Journal/Proceeding Title: IEEE Transactions on Control of Network Systems
Version: Author's manuscript

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.