Spectral-infinite-element simulations of magnetic anomalies
Author(s): Gharti, Hom Nath; Tromp, Jeroen
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1bk16p4f
Abstract: | We implement a spectral-infinite-element method (SIEM) to compute magnetic anomalies by solving a discretized form of the Poisson/Laplace equation. The SIEM combines the highly accurate spectral-element method with the mapped-infinite element method, which reproduces an unbounded domain accurately and efficiently. This combination is made possible by coupling Gauss–Legendre–Lobatto quadrature in spectral elements with Gauss–Radau quadrature in infinite elements along the infinite directions. Our method has two distinct advantages over traditional methods. First, the higher-order discretization accurately renders complex magnetized heterogeneities. Second, since the computation time is independent of the number of observation points, the method is efficient for very large models. We illustrate the accuracy and efficiency of our method by comparing calculated magnetic anomalies for various magnetized heterogeneities with corresponding analytical and commonly used computational solutions. We conclude with a practical example involving a complex 3-D model of an ore mine. |
Publication Date: | 26-Feb-2019 |
Citation: | Gharti, Hom Nath, and Jeroen Tromp. "Spectral-infinite-element simulations of magnetic anomalies." Geophysical Journal International 217, no. 3 (2019): 1656-1667. doi:10.1093/gji/ggz107. |
DOI: | doi:10.1093/gji/ggz107 |
ISSN: | 0956-540X |
EISSN: | 1365-246X |
Pages: | 1656 - 1667 |
Type of Material: | Journal Article |
Journal/Proceeding Title: | Geophysical Journal International |
Version: | Final published version. Article is made available in OAR by the publisher's permission or policy. |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.