Skip to main content

Raman spectrum and polarizability of liquid water from deep neural networks

Author(s): Sommers, Grace M; Calegari Andrade, Marcos F; Zhang, Linfeng; Wang, Han; Car, Roberto

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr19k45t18
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSommers, Grace M-
dc.contributor.authorCalegari Andrade, Marcos F-
dc.contributor.authorZhang, Linfeng-
dc.contributor.authorWang, Han-
dc.contributor.authorCar, Roberto-
dc.date.accessioned2024-06-13T18:32:06Z-
dc.date.available2024-06-13T18:32:06Z-
dc.date.issued2020-04-30en_US
dc.identifier.citationSommers, Grace M, Calegari Andrade, Marcos F, Zhang, Linfeng, Wang, Han, Car, Roberto. (Raman spectrum and polarizability of liquid water from deep neural networks. Physical Chemistry Chemical Physics, 22 (19), 10592 - 10602. doi:10.1039/d0cp01893gen_US
dc.identifier.issn1463-9076-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr19k45t18-
dc.description.abstractWe introduce a scheme based on machine learning and deep neural networks to model the environmental dependence of the electronic polarizability in insulating materials. Application to liquid water shows that training the network with a relatively small number of molecular configurations is sufficient to predict the polarizability of arbitrary liquid configurations in close agreement with ab initio density functional theory calculations. In combination with a neural network representation of the interatomic potential energy surface, the scheme allows us to calculate the Raman spectra along 2-nanosecond classical trajectories at different temperatures for H2O and D2O. The vast gains in efficiency provided by the machine learning approach enable longer trajectories and larger system sizes relative to ab initio methods, reducing the statistical error and improving the resolution of the low-frequency Raman spectra. Decomposing the spectra into intramolecular and intermolecular contributions elucidates the mechanisms behind the temperature dependence of the low-frequency and stretch modes.en_US
dc.format.extent10592 - 10602en_US
dc.languageenen_US
dc.language.isoen_USen_US
dc.relation.ispartofPhysical Chemistry Chemical Physicsen_US
dc.rightsAuthor's manuscripten_US
dc.titleRaman spectrum and polarizability of liquid water from deep neural networksen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1039/d0cp01893g-
dc.identifier.eissn1463-9084-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Raman spectrum and polarizability of liquid water from deep neural networks.pdf646.02 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.