Transfer learning for galaxy morphology from one survey to another
Author(s): Sanchez, H Dominguez; Huertas-Company, M; Bernardi, M; Kaviraj, S; Fischer, JL; et al
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr19k45s5v
Abstract: | Deep learning (DL) algorithms for morphological classification of galaxies have proven very successful, mimicking (or even improving) visual classifications. However, these algorithms rely on large training samples of labelled galaxies (typically thousands of them). A key question for using DL classifications in future Big Data surveys is how much of the knowledge acquired from an existing survey can be exported to a new data set, i.e. if the features learned by the machines are meaningful for different data. We test the performance of DL models, trained with Sloan Digital Sky Survey (SDSS) data, on Dark Energy Survey (DES) using images for a sample of similar to 5000 galaxies with a similar redshift distribution to SDSS. Applying the models directly to DES data provides a reasonable global accuracy (similar to 90 per cent), but small completeness and purity values. A fast domain adaptation step, consisting of a further training with a small DES sample of galaxies (similar to 500-300), is enough for obtaining an accuracy >95 per cent and a significant improvement in the completeness and purity values. This demonstrates that, once trained with a particular data set, machines can quickly adapt to new instrument characteristics (e.g. PSF, seeing, depth), reducing by almost one order of magnitude the necessary training sample for morphological classification. Redshift evolution effects or significant depth differences are not taken into account in this study. |
Publication Date: | Mar-2019 |
Electronic Publication Date: | 28-Dec-2018 |
Citation: | Sanchez, H Dominguez, Huertas-Company, M, Bernardi, M, Kaviraj, S, Fischer, JL, Abbott, TMC, Abdalla, FB, Annis, J, Avila, S, Brooks, D, Buckley-Geer, E, Carnero Rosell, A, Kind, M Carrasco, Carretero, J, Cunha, CE, D Andrea, CB, da Costa, LN, Davis, C, De Vicente, J, Doel, P, Evrard, AE, Fosalba, P, Frieman, J, Garcia-Bellido, J, Gaztanaga, E, Gerdes, DW, Gruen, D, Gruendl, RA, Gschwend, J, Gutierrez, G, Hartley, WG, Hollowood, DL, Honscheid, K, Hoyle, B, James, DJ, Kuehn, K, Kuropatkin, N, Lahav, O, Maia, MAG, March, M, Melchior, P, Menanteau, F, Miquel, R, Nord, B, Plazas, AA, Sanchez, E, Scarpine, V, Schindler, R, Schubnell, M, Smith, M, Smith, RC, Soares-Santos, M, Sobreira, F, Suchyta, E, Swanson, MEC, Tarle, G, Thomas, D, Walker, AR, Zuntz, J. (2019). Transfer learning for galaxy morphology from one survey to another. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 484 (93 - 100. doi:10.1093/mnras/sty3497 |
DOI: | doi:10.1093/mnras/sty3497 |
ISSN: | 0035-8711 |
EISSN: | 1365-2966 |
Related Item: | https://ui.adsabs.harvard.edu/abs/2019MNRAS.484...93D/abstract |
Pages: | 93 - 100 |
Type of Material: | Journal Article |
Journal/Proceeding Title: | MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY |
Version: | Final published version. Article is made available in OAR by the publisher's permission or policy. |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.