Skip to main content

Transfer learning for galaxy morphology from one survey to another

Author(s): Sanchez, H Dominguez; Huertas-Company, M; Bernardi, M; Kaviraj, S; Fischer, JL; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr19k45s5v
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSanchez, H Dominguez-
dc.contributor.authorHuertas-Company, M-
dc.contributor.authorBernardi, M-
dc.contributor.authorKaviraj, S-
dc.contributor.authorFischer, JL-
dc.contributor.authorAbbott, TMC-
dc.contributor.authorAbdalla, FB-
dc.contributor.authorAnnis, J-
dc.contributor.authorAvila, S-
dc.contributor.authorBrooks, D-
dc.contributor.authorBuckley-Geer, E-
dc.contributor.authorCarnero Rosell, A-
dc.contributor.authorKind, M Carrasco-
dc.contributor.authorCarretero, J-
dc.contributor.authorCunha, CE-
dc.contributor.authorD Andrea, CB-
dc.contributor.authorda Costa, LN-
dc.contributor.authorDavis, C-
dc.contributor.authorDe Vicente, J-
dc.contributor.authorDoel, P-
dc.contributor.authorEvrard, AE-
dc.contributor.authorFosalba, P-
dc.contributor.authorFrieman, J-
dc.contributor.authorGarcia-Bellido, J-
dc.contributor.authorGaztanaga, E-
dc.contributor.authorGerdes, DW-
dc.contributor.authorGruen, D-
dc.contributor.authorGruendl, RA-
dc.contributor.authorGschwend, J-
dc.contributor.authorGutierrez, G-
dc.contributor.authorHartley, WG-
dc.contributor.authorHollowood, DL-
dc.contributor.authorHonscheid, K-
dc.contributor.authorHoyle, B-
dc.contributor.authorJames, DJ-
dc.contributor.authorKuehn, K-
dc.contributor.authorKuropatkin, N-
dc.contributor.authorLahav, O-
dc.contributor.authorMaia, MAG-
dc.contributor.authorMarch, M-
dc.contributor.authorMelchior, Peter M-
dc.contributor.authorMenanteau, F-
dc.contributor.authorMiquel, R-
dc.contributor.authorNord, B-
dc.contributor.authorPlazas, AA-
dc.contributor.authorSanchez, E-
dc.contributor.authorScarpine, V-
dc.contributor.authorSchindler, R-
dc.contributor.authorSchubnell, M-
dc.contributor.authorSmith, M-
dc.contributor.authorSmith, RC-
dc.contributor.authorSoares-Santos, M-
dc.contributor.authorSobreira, F-
dc.contributor.authorSuchyta, E-
dc.contributor.authorSwanson, MEC-
dc.contributor.authorTarle, G-
dc.contributor.authorThomas, D-
dc.contributor.authorWalker, AR-
dc.contributor.authorZuntz, J-
dc.date.accessioned2022-01-25T15:01:25Z-
dc.date.available2022-01-25T15:01:25Z-
dc.date.issued2019-03en_US
dc.identifier.citationSanchez, H Dominguez, Huertas-Company, M, Bernardi, M, Kaviraj, S, Fischer, JL, Abbott, TMC, Abdalla, FB, Annis, J, Avila, S, Brooks, D, Buckley-Geer, E, Carnero Rosell, A, Kind, M Carrasco, Carretero, J, Cunha, CE, D Andrea, CB, da Costa, LN, Davis, C, De Vicente, J, Doel, P, Evrard, AE, Fosalba, P, Frieman, J, Garcia-Bellido, J, Gaztanaga, E, Gerdes, DW, Gruen, D, Gruendl, RA, Gschwend, J, Gutierrez, G, Hartley, WG, Hollowood, DL, Honscheid, K, Hoyle, B, James, DJ, Kuehn, K, Kuropatkin, N, Lahav, O, Maia, MAG, March, M, Melchior, P, Menanteau, F, Miquel, R, Nord, B, Plazas, AA, Sanchez, E, Scarpine, V, Schindler, R, Schubnell, M, Smith, M, Smith, RC, Soares-Santos, M, Sobreira, F, Suchyta, E, Swanson, MEC, Tarle, G, Thomas, D, Walker, AR, Zuntz, J. (2019). Transfer learning for galaxy morphology from one survey to another. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 484 (93 - 100. doi:10.1093/mnras/sty3497en_US
dc.identifier.issn0035-8711-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr19k45s5v-
dc.description.abstractDeep learning (DL) algorithms for morphological classification of galaxies have proven very successful, mimicking (or even improving) visual classifications. However, these algorithms rely on large training samples of labelled galaxies (typically thousands of them). A key question for using DL classifications in future Big Data surveys is how much of the knowledge acquired from an existing survey can be exported to a new data set, i.e. if the features learned by the machines are meaningful for different data. We test the performance of DL models, trained with Sloan Digital Sky Survey (SDSS) data, on Dark Energy Survey (DES) using images for a sample of similar to 5000 galaxies with a similar redshift distribution to SDSS. Applying the models directly to DES data provides a reasonable global accuracy (similar to 90 per cent), but small completeness and purity values. A fast domain adaptation step, consisting of a further training with a small DES sample of galaxies (similar to 500-300), is enough for obtaining an accuracy >95 per cent and a significant improvement in the completeness and purity values. This demonstrates that, once trained with a particular data set, machines can quickly adapt to new instrument characteristics (e.g. PSF, seeing, depth), reducing by almost one order of magnitude the necessary training sample for morphological classification. Redshift evolution effects or significant depth differences are not taken into account in this study.en_US
dc.format.extent93 - 100en_US
dc.language.isoen_USen_US
dc.relationhttps://ui.adsabs.harvard.edu/abs/2019MNRAS.484...93D/abstracten_US
dc.relation.ispartofMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETYen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleTransfer learning for galaxy morphology from one survey to anotheren_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1093/mnras/sty3497-
dc.date.eissued2018-12-28en_US
dc.identifier.eissn1365-2966-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
sty3497.pdf1.02 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.