Skip to main content

A DNS study of self-accelerating cylindrical hydrogen–air flames with detailed chemistry

Author(s): Xin, Yuxuan X; Yoo, Chun S; Chen, Jacqueline H; Law, Chung K

To refer to this page use:
Abstract: The self-accelerating expanding cylindrical stoichiometric hydrogen–air flames at eight atmospheres were studied via two-dimensional direct numerical simulation (DNS) of the full compressible Navier–Stokes equations with detailed chemistry. The flame morphology and propagation were finely resolved by the application of a time step of 2.5 ns and a grid size of 4 μm. Temporally, the intermittent propagation of the flame front is captured through examining its propagation velocity. Spatially, the flame front is found to be comprised of segments exhibiting similar propagation properties, i.e. the intermittent instantaneous propagation of the flame front is attributed to the development of cellular structures induced by hydrodynamic instability. The long-term average propagation velocity of the flame front is described by a power law, with a self-acceleration exponent of 1.22 for the flame radius with respect to time. The increase in the global flame velocity is shown to be primarily a consequence of increased flame surface area, with the local front propagation velocity remaining largely at the constant laminar flame speed for the near-unity Lewis number mixture studied herein.
Publication Date: 2015
Citation: Xin, Yuxuan X., Chun S. Yoo, Jacqueline H. Chen, and Chung K. Law. "A DNS study of self-accelerating cylindrical hydrogen–air flames with detailed chemistry." Proceedings of the Combustion Institute 35, no. 1 (2015): pp. 753-760. doi:10.1016/j.proci.2014.06.076
DOI: 10.1016/j.proci.2014.06.076
ISSN: 1540-7489
Pages: 753 - 760
Type of Material: Journal Article
Journal/Proceeding Title: Proceedings of the Combustion Institute
Version: Author's manuscript

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.