Skip to main content

Monotonic convergent quantum optimal control method with exact equality constraints on the optimized control fields

Author(s): Shu, Chuan-Cun; Ho, Tak-San; Rabitz, Herschel

To refer to this page use: http://arks.princeton.edu/ark:/88435/pr19b9b
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShu, Chuan-Cun-
dc.contributor.authorHo, Tak-San-
dc.contributor.authorRabitz, Herschel-
dc.date.accessioned2020-10-30T18:35:37Z-
dc.date.available2020-10-30T18:35:37Z-
dc.date.issued2016-05-18en_US
dc.identifier.citationShu, Chuan-Cun, Ho, Tak-San, Rabitz, Herschel. (2016). Monotonic convergent quantum optimal control method with exact equality constraints on the optimized control fields. PHYSICAL REVIEW A, 93 (10.1103/PhysRevA.93.053418en_US
dc.identifier.issn2469-9926-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr19b9b-
dc.description.abstractWe present a monotonic convergent quantum optimal control method that can be utilized to optimize the control field while exactly enforcing multiple equality constraints for steering quantum systems from an initial state towards desired quantum states. For illustration, special consideration is given to finding optimal control fields with (i) exact zero area and (ii) exact zero area along with constant pulse fluence. The method combined with these two types of constraints is successfully employed to maximize the state-to-state transition probability in a model vibrating diatomic molecule.en_US
dc.format.extent053418-1 - 053418-6en_US
dc.language.isoen_USen_US
dc.relation.ispartofPHYSICAL REVIEW Aen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleMonotonic convergent quantum optimal control method with exact equality constraints on the optimized control fieldsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1103/PhysRevA.93.053418-
dc.identifier.eissn2469-9934-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
There are no files associated with this item.


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.