Skip to main content

Atomistic Molecular Dynamics Simulations of Carbon Dioxide Diffusivity in n -Hexane, n -Decane, n -Hexadecane, Cyclohexane, and Squalane

Author(s): Moultos, Othonas A.; Tsimpanogiannis, Ioannis N.; Panagiotopoulos, Athanassios Z.; Trusler, J. P. Martin; Economou, Ioannis G.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr19477
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMoultos, Othonas A.-
dc.contributor.authorTsimpanogiannis, Ioannis N.-
dc.contributor.authorPanagiotopoulos, Athanassios Z.-
dc.contributor.authorTrusler, J. P. Martin-
dc.contributor.authorEconomou, Ioannis G.-
dc.date.accessioned2020-01-30T22:44:48Z-
dc.date.available2020-01-30T22:44:48Z-
dc.date.issued2016-12-22en_US
dc.identifier.citationMoultos, Othonas A, Tsimpanogiannis, Ioannis N, Panagiotopoulos, Athanassios Z, Trusler, JP Martin, Economou, Ioannis G. (2016). Atomistic Molecular Dynamics Simulations of Carbon Dioxide Diffusivity in n -Hexane, n -Decane, n -Hexadecane, Cyclohexane, and Squalane. The Journal of Physical Chemistry B, 120 (50), 12890 - 12900. doi:10.1021/acs.jpcb.6b04651en_US
dc.identifier.issn1520-6106-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr19477-
dc.description.abstractAtomistic molecular dynamics simulations were carried out to obtain the diffusion coefficients of CO2 in n-hexane, n-decane, n-hexadecane, cyclohexane, and squalane at temperatures up to 423.15 K and pressures up to 65 MPa. Three popular models were used for the representation of hydrocarbons: the united atom TraPPE (TraPPE-UA), the all-atom OPLS, and an optimized version of OPLS, namely, L-OPLS. All models qualitatively reproduce the pressure dependence of the diffusion coefficient of CO2 in hydrocarbons measured recently, and L-OPLS was found to be the most accurate. Specifically for n-alkanes, L-OPLS also reproduced the measured viscosities and densities much more accurately than the original OPLS and TraPPE-UA models, indicating that the optimization of the torsional potential is crucial for the accurate description of transport properties of long chain molecules. The three force fields predict different microscopic properties such as the mean square radius of gyration for the n-alkane molecules and pair correlation functions for the CO2-n-alkane interactions. CO2 diffusion coefficients in all hydrocarbons studied are shown to deviate significantly from the Stokes-Einstein behavior.en_US
dc.format.extent12890 - 12900en_US
dc.language.isoen_USen_US
dc.relation.ispartofThe Journal of Physical Chemistry Ben_US
dc.rightsAuthor's manuscripten_US
dc.titleAtomistic Molecular Dynamics Simulations of Carbon Dioxide Diffusivity in n -Hexane, n -Decane, n -Hexadecane, Cyclohexane, and Squalaneen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1021/acs.jpcb.6b04651-
dc.date.eissued2016-12-12en_US
dc.identifier.eissn1520-5207-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Atomistic Molecular Dynamics Simulations of Carbon Dioxide Diffusivity in n-Hexane, n-Decane, n-Hexadecane, Cyclohexane, and Squalane.pdf915.17 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.