Skip to main content

Fatty Acid Elongase 7 Catalyzes Lipidome Remodeling Essential for Human Cytomegalovirus Replication

Author(s): Purdy, John G.; Shenk, Thomas; Rabinowitz, Joshua D.

To refer to this page use:
Abstract: Human cytomegalovirus (HCMV) infection rewires host-cell metabolism, upregulating flux from glucose into acetyl-CoA to feed fatty acid metabolism, with saturated very-long-chain fatty acids (VLFCAs) required for production of infectious virion progeny. The human genome encodes seven elongase enzymes (ELOVL) that extend long-chain fatty acids into VLCFA. Here, we identify ELOVL7 as pivotal for HCMV infection. HCMV induces ELOVL7 by more than 150-fold. This induction is dependent on mTOR and SREBP-1. ELOVL7 knockdown or mTOR inhibition impairs HCMV-induced fatty acid elongation, HCMV particle release, and infectivity per particle. ELOVL7 overexpression enhances HCMV replication. During HCMV infection, mTOR activity is maintained by the viral protein pUL38. Expression of pUL38 is sufficient to induce ELOVL7, and pUL38-deficient virus is partially defective in ELOVL7 induction and fatty acid elongation. Thus, through its ability to modulate mTOR and SREBP-1, HCMV induces ELOVL7 to synthesize the saturated VLCFA required for efficient virus replication.
Publication Date: 3-Mar-2015
Citation: Purdy, John G., Shenk, Thomas, Rabinowitz, Joshua D. (2015). Fatty Acid Elongase 7 Catalyzes Lipidome Remodeling Essential for Human Cytomegalovirus Replication. Cell Reports, 10 (8), 1375 - 1385. doi:10.1016/j.celrep.2015.02.003
DOI: doi:10.1016/j.celrep.2015.02.003
ISSN: 2211-1247
Pages: 1375 - 1385
Type of Material: Journal Article
Journal/Proceeding Title: Cell Reports
Version: Final published version. This is an open access article.

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.