Skip to main content

Fine-Tuning of σE Activation Suppresses Multiple Assembly-Defective Mutations in Escherichia coli

Author(s): Hart, Elizabeth M; O'Connell, Aileen; Tang, Kimberly; Wzorek, Joseph S; Grabowicz, Marcin; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr17d2q71t
Abstract: The Gram-negative outer membrane (OM) is a selectively permeable asymmetric bilayer that allows vital nutrients to diffuse into the cell but prevents toxins and hydrophobic molecules from entering. Functionally and structurally diverse β-barrel outer membrane proteins (OMPs) build and maintain the permeability barrier, making the assembly of OMPs crucial for cell viability. In this work, we characterize an assembly-defective mutant of the maltoporin LamB, LamBG439D We show that the folding defect of LamBG439D results in an accumulation of unfolded substrate that is toxic to the cell when the periplasmic protease DegP is removed. Selection for suppressors of this toxicity identified the novel mutant degSA323E allele. The mutant DegSA323E protein contains an amino acid substitution at the PDZ/protease domain interface that results in a partially activated conformation of this protein. This activation increases basal levels of downstream σE stress response signaling. Furthermore, the enhanced σE activity of DegSA323E suppresses a number of other assembly-defective conditions without exhibiting the toxicity associated with high levels of σE activity. We propose that the increased basal levels of σE signaling primes the cell to respond to envelope stress before OMP assembly defects threaten cell viability. This finding addresses the importance of envelope stress responses in monitoring the OMP assembly process and underpins the critical balance between envelope defects and stress response activation.
Publication Date: Jun-2019
Citation: Hart, Elizabeth M, O'Connell, Aileen, Tang, Kimberly, Wzorek, Joseph S, Grabowicz, Marcin, Kahne, Daniel, Silhavy, Thomas J. (2019). Fine-Tuning of σE Activation Suppresses Multiple Assembly-Defective Mutations in Escherichia coli. Journal of Bacteriology, 201 (11), 10.1128/jb.00745-18
DOI: doi:10.1128/jb.00745-18
ISSN: 0021-9193
EISSN: 1098-5530
Language: eng
Type of Material: Journal Article
Journal/Proceeding Title: Journal of Bacteriology
Version: Author's manuscript



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.