Skip to main content

Fine-Tuning of σE Activation Suppresses Multiple Assembly-Defective Mutations in Escherichia coli

Author(s): Hart, Elizabeth M; O'Connell, Aileen; Tang, Kimberly; Wzorek, Joseph S; Grabowicz, Marcin; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr17d2q71t
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHart, Elizabeth M-
dc.contributor.authorO'Connell, Aileen-
dc.contributor.authorTang, Kimberly-
dc.contributor.authorWzorek, Joseph S-
dc.contributor.authorGrabowicz, Marcin-
dc.contributor.authorKahne, Daniel-
dc.contributor.authorSilhavy, Thomas J-
dc.date.accessioned2023-12-12T14:58:57Z-
dc.date.available2023-12-12T14:58:57Z-
dc.date.issued2019-06en_US
dc.identifier.citationHart, Elizabeth M, O'Connell, Aileen, Tang, Kimberly, Wzorek, Joseph S, Grabowicz, Marcin, Kahne, Daniel, Silhavy, Thomas J. (2019). Fine-Tuning of σE Activation Suppresses Multiple Assembly-Defective Mutations in Escherichia coli. Journal of Bacteriology, 201 (11), 10.1128/jb.00745-18en_US
dc.identifier.issn0021-9193-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr17d2q71t-
dc.description.abstractThe Gram-negative outer membrane (OM) is a selectively permeable asymmetric bilayer that allows vital nutrients to diffuse into the cell but prevents toxins and hydrophobic molecules from entering. Functionally and structurally diverse β-barrel outer membrane proteins (OMPs) build and maintain the permeability barrier, making the assembly of OMPs crucial for cell viability. In this work, we characterize an assembly-defective mutant of the maltoporin LamB, LamBG439D We show that the folding defect of LamBG439D results in an accumulation of unfolded substrate that is toxic to the cell when the periplasmic protease DegP is removed. Selection for suppressors of this toxicity identified the novel mutant degSA323E allele. The mutant DegSA323E protein contains an amino acid substitution at the PDZ/protease domain interface that results in a partially activated conformation of this protein. This activation increases basal levels of downstream σE stress response signaling. Furthermore, the enhanced σE activity of DegSA323E suppresses a number of other assembly-defective conditions without exhibiting the toxicity associated with high levels of σE activity. We propose that the increased basal levels of σE signaling primes the cell to respond to envelope stress before OMP assembly defects threaten cell viability. This finding addresses the importance of envelope stress responses in monitoring the OMP assembly process and underpins the critical balance between envelope defects and stress response activation.en_US
dc.languageengen_US
dc.language.isoen_USen_US
dc.relation.ispartofJournal of Bacteriologyen_US
dc.rightsAuthor's manuscripten_US
dc.titleFine-Tuning of σE Activation Suppresses Multiple Assembly-Defective Mutations in Escherichia colien_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1128/jb.00745-18-
dc.identifier.eissn1098-5530-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Fine_tuning_multiple_mutations_coli.pdf4.09 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.