Skip to main content

ALMOST GLOBAL EXISTENCE FOR CUBIC NONLINEAR SCHRODINGER EQUATIONS IN ONE SPACE DIMENSION

Author(s): Murphy, Jason; Pusateri, Fabio Giuseppe

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr17679
Abstract: We consider non-gauge-invariant cubic nonlinear Schrodinger equations in one space dimension. We show that initial data of size epsilon in a weighted Sobolev space lead to solutions with sharp L-x(infinity) decay up to time exp(C-epsilon(-2)). We also exhibit norm growth beyond this time for a specific choice of nonlinearity.
Publication Date: Apr-2017
Electronic Publication Date: Apr-2017
Citation: Murphy, Jason, Pusateri, Fabio. (2017). ALMOST GLOBAL EXISTENCE FOR CUBIC NONLINEAR SCHRODINGER EQUATIONS IN ONE SPACE DIMENSION. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 37 (2077 - 2102. doi:10.3934/dcds.2017089
DOI: doi:10.3934/dcds.2017089
ISSN: 1078-0947
EISSN: 1553-5231
Pages: 2077 - 2102
Type of Material: Journal Article
Journal/Proceeding Title: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS
Version: Author's manuscript



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.