Skip to main content

ALMOST GLOBAL EXISTENCE FOR CUBIC NONLINEAR SCHRODINGER EQUATIONS IN ONE SPACE DIMENSION

Author(s): Murphy, Jason; Pusateri, Fabio Giuseppe

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr17679
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMurphy, Jason-
dc.contributor.authorPusateri, Fabio Giuseppe-
dc.date.accessioned2018-07-20T15:07:13Z-
dc.date.available2018-07-20T15:07:13Z-
dc.date.issued2017-04en_US
dc.identifier.citationMurphy, Jason, Pusateri, Fabio. (2017). ALMOST GLOBAL EXISTENCE FOR CUBIC NONLINEAR SCHRODINGER EQUATIONS IN ONE SPACE DIMENSION. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 37 (2077 - 2102. doi:10.3934/dcds.2017089en_US
dc.identifier.issn1078-0947-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr17679-
dc.description.abstractWe consider non-gauge-invariant cubic nonlinear Schrodinger equations in one space dimension. We show that initial data of size epsilon in a weighted Sobolev space lead to solutions with sharp L-x(infinity) decay up to time exp(C-epsilon(-2)). We also exhibit norm growth beyond this time for a specific choice of nonlinearity.en_US
dc.format.extent2077 - 2102en_US
dc.language.isoenen_US
dc.relation.ispartofDISCRETE AND CONTINUOUS DYNAMICAL SYSTEMSen_US
dc.rightsAuthor's manuscripten_US
dc.titleALMOST GLOBAL EXISTENCE FOR CUBIC NONLINEAR SCHRODINGER EQUATIONS IN ONE SPACE DIMENSIONen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.3934/dcds.2017089-
dc.date.eissued2017-04en_US
dc.identifier.eissn1553-5231-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1605.03247v1.pdf355.84 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.