Skip to main content

The statistical mechanics of Twitter communities

Author(s): Hall, Gavin; Bialek, William

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr17659g08
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHall, Gavin-
dc.contributor.authorBialek, William-
dc.date.accessioned2024-08-12T15:11:03Z-
dc.date.available2024-08-12T15:11:03Z-
dc.date.issued2019-09-27en_US
dc.identifier.citationHall, Gavin, Bialek, William. (The statistical mechanics of Twitter communities. Journal of Statistical Mechanics: Theory and Experiment, 2019 (9), 093406 - 093406. doi:10.1088/1742-5468/ab3af0en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr17659g08-
dc.description.abstractWe build models for the distribution of social states in Twitter communities. States can be defined by the participation vs silence of individuals in conversations that surround key words, and we approximate the joint distribution of these binary variables using the maximum entropy principle, finding the least structured models that match the mean probability of individuals tweeting and their pairwise correlations. These models provide very accurate, quantitative descriptions of higher order structure in these social networks. The parameters of these models seem poised close to critical surfaces in the space of possible models, and we observe scaling behavior of the data under coarse– graining. These results suggest that simple models, grounded in statistical physics, may provide a useful point of view on the larger data sets now emerging from complex social systems.en_US
dc.format.extent093406 - 093406en_US
dc.relation.ispartofJournal of Statistical Mechanics: Theory and Experimenten_US
dc.rightsAuthor's manuscripten_US
dc.subjectcritical phenomena of socio-economic systems, inference in socio- economic system, socio-economic networksen_US
dc.titleThe statistical mechanics of Twitter communitiesen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1088/1742-5468/ab3af0-
dc.date.eissued2019-09-27en_US
dc.identifier.eissn1742-5468-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1812.07029v1.pdf997.82 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.