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We build models for the distribution of social states in Twitter communities. States can be
defined by the participation vs silence of individuals in conversations that surround key words, and
we approximate the joint distribution of these binary variables using the maximum entropy principle,
finding the least structured models that match the mean probability of individuals tweeting and their
pairwise correlations. These models provide very accurate, quantitative descriptions of higher order
structure in these social networks. The parameters of these models seem poised close to critical
surfaces in the space of possible models, and we observe scaling behavior of the data under coarse–
graining. These results suggest that simple models, grounded in statistical physics, may provide a
useful point of view on the larger data sets now emerging from complex social systems.

I. INTRODUCTION

Social systems exhibit rich collective behaviors. Many
large-scale social processes, from cultural fads [1] to res-
idential segregation [2] to the polarization of political
opinions [3], depend on the interactions of many individu-
als. Indeed, many social phenomena are emergent almost
by definition. Sociologists have long explored the rela-
tionship between individual actions, interactions among
individuals, and macroscopic social outcomes [4, 5].

While there is general agreement on the qualitative
idea that social phenomena are emergent, there has been
much less progress toward quantitative theories. For
inanimate systems, especially near thermal equilibrium,
statistical mechanics provides a framework for build-
ing quantitative theories of how macroscopic behaviors
emerge from microscopic interactions. Importantly, suc-
cessful theories in statistical mechanics often are simpler
than the underlying microscopic reality, and the renor-
malization group allows us to understand how this sim-
plification is possible [6, 7]. Inspired by these examples,
there have been efforts to examine social phenomena us-
ing ideas and methods borrowed from statistical physics
[8]. Examples include the dynamics of a strike [9], the
emergence of group consensus [10, 11], the behavior of
dancers at heavy metal concerts [12], and temporal pat-
terns of activity and inactivity on Twitter [13].

In much previous work, methods from statistical
physics were used to construct mathematically precise
versions of existing sociological theories [14], but the re-
sulting models might or might not engage with quanti-
tative data on real social systems. Here, inspired by a
stream of work on biological systems ranging from fami-
lies of proteins [15–18] to networks of neurons [19–22] to
flocks of birds [23, 24], we take a different approach, us-
ing the maximum entropy method [25, 26] to build a sta-
tistical mechanics description of a social system directly
from real data, independent of traditional sociological hy-
potheses. Previous efforts in this direction include anal-
yses of voting patterns on the US Supreme Court [27, 28]

and patterns of conflict in troops of macaques [29].
Here we adopt the strategy of building models directly

from data, and explore the emergence of collective behav-
iors in Twitter communities. In order to carry out this
program we need to identify communities and to define
behavioral states for all the individuals in those commu-
nities. As a first step, we take these states to be partici-
pating or not participating in conversations that involve
particular keywords. Then, states are binary and the
maximum entropy models consistent with the pairwise
correlations among these variables are equivalent to Ising
spin glasses [30]. These relatively simple models success-
fully predict higher order structure in the data. Analysis
of these models, as well as a direct coarse–graining of the
data, suggests that these systems are close to a critical
point or critical surface in their parameter space. We
explore what this might mean for social functioning.

II. NETWORKS AND STATES

The full set of Twitter users is vast, beyond our ability
to build explicit models. As a start, we want to focus on
smaller networks of users who are well connected with
one another. We start by choosing a single Twitter user
and then find the people whom this user follows, and
the people whom those neighbors follow. The result is
a social network with known connectivity and relatively
short path lengths. Twitter provides public access to
the last 3200 tweets for each user, so each node in our
network is associated with a stream of timestamped text.

We note that the initial choice of root users is arbitrary,
and it is difficult to ask in what sense our results are rep-
resentative (except by trying many examples). Happily,
none of the individuals identified in this way were pub-
lic figures, or otherwise strong outliers in terms of their
social media presence.

Even the networks at depth two from a random user
are quite large, so we focus further, breaking these net-
works into sub–communities using the Clauset–Newman–
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FIG. 1: Example Social Network. An example social
network used for building a pairwise max-ent model. Same
sub–community as used in Fig 4. We include more infor-
mation on the topology of the social networks examined in
Appendix A.

Moore algorithm [31]. This algorithm builds sub–
communities such that the proportion of edges within
sub–communities is maximized while minimizing the
number of edges between sub–communities. The result-
ing sub–communities are the networks that we use for
further analysis. Among 106 examples we analyze net-
works that contain between 8 and 80 people, and there
don’t appear to be any simple trends of topology vs size
(see Appendix A for these and other details). An ex-
ample of the networks that we identify is shown in Fig
1.

Having defined a network of individuals i =
1, 2, · · · , N , what are the states σi taken on by these in-
dividuals? In examining the raw data, we find prominent
words that are used many times within a short period of
time (Appendix B). For the remainder of this paper, we
will call these prominent words ‘keywords,’ and they can
intuitively be thought of as something akin to a topic of
conversation in the community being studied. For exam-
ple, in a community with many physicists, one promi-
nent keyword identified was ‘Kosterlitz’, as many people
talked about J.M. Kosterlitz in a very short period of
time after he shared the 2016 Nobel Prize.

These keywords suggest a simple and intuitive way to
binarize data from Twitter: either a given individual has
used a given keyword, or they have not. So, in the physi-
cists’ example, we can find who talked about Kosterlitz
and who did not, and assign everyone who did talk about
Kosterlitz a state σi = 1 and everyone who did not talk
about Kosterlitz a variable σi = −1. We can then con-
glomerate these variables into a vector σ representing
whether or not everyone in the dataset used the given
keyword. In this sense, the variable σ represents a social
state of the community—there is an event happening in
the world (represented by the keyword), and members

of the community can either participate in this event or
remain silent.

The succession of keywords, which by definition are
each well localized in time, provide a series of snapshots
of the social state σ. These snapshots are drawn out of
some distribution P (σ) which characterizes the collective
states taken on by the network as a whole. Our goal is
to characterize this distribution.

There obviously are many ways to simplify or bina-
rize data from Twitter. Even with the use of keywords
as a tool for simplification, these keywords themselves
could be chosen in different ways. While we cannot claim
uniqueness, we do feel that our choice of simplification is
intuitive and easy to implement (Appendix B). Impor-
tantly, we will see that the states defined in this way
have orderly behavior.

III. MAXIMUM ENTROPY MODELS

The social states σ are the “microscopic” states of our
system, describing what each individual user is doing dur-
ing a single conversation. In the spirit of statistical me-
chanics, we would like to write down the analog of the
Boltzmann distribution, P (σ), which tells us which so-
cial states are favored in a community and which states
are disfavored. As usual, the number of possible states σ
is so large (2N ) that we cannot directly “measure” P (σ)
from any reasonable amount of data once we are looking
at networks of reasonable size (N � 10). More precisely,
the distribution P (σ) is a list of length 2N , constrained
only by normalization, and so if there is no simpler under-
lying structure then we can’t make any progress without
making more than 2N measurements.

The maximum entropy method, as first emphasized by
Jaynes [25, 26], gives us a way of searching systemat-
ically for simplified descriptions. Without constraints,
the distribution that maximizes the entropy, and hence
has the minimal structure, is the uniform distribution,
which is a clearly unrealistic model. We therefore in-
troduce constraints to ensure that the model is capable
of reproducing features of the empirical data, and then
maximize the entropy to remove any structures which are
not absolutely necessary to meet these constraints.

In the present context, it is natural to constrain one–
body marginals, which means that our model will repro-
duce the observed average activity of each user in the
community,

〈σi〉P ≡
∑
σ

P (σ)σi = 〈σi〉obs. (1)

To capture the interactions among individuals, we insist
that our model also match the correlations between pairs
of users, so that

〈σiσj〉P ≡
∑
σ

P (σ)σiσj = 〈σiσj〉obs; (2)
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FIG. 2: Covariance and coupling matrices. An exam-
ple of the covariance matrix [Eq (5)] and the corresponding
coupling matrix Jij [Eq (4)] for a Twitter community. Same
community as used in Figures 3 and 4. Blank elements cor-
respond to pairs of users without a direct social connection.

to respect the known connectivity of the network, and to
limit the complexity of our models, we enforce this con-
straint only among pairs that have a direct social connec-
tion. Given these constraints, we look for the distribution
P (σ) with the largest possible entropy, and the form of
this distribution (Appendix C) is

P (σ) =
1

Z
e−Eσ (3)

Eσ = −
∑
i

hiσi −
1

2

∑
i 6=j

AijJijσiσj , (4)

where hi are parameters corresponding to constraints on
one body marginals [Eq (1)] and Jij are parameters corre-
sponding to constraints on two body marginals [Eq (2)].
We introduce the adjacency matrix A for the commu-
nity to remind us that we have constraints only among
connected pairs; Aij = 1 if there is a social tie between
individuals i and j and 0 otherwise. We find the values
of {hi, Jij} by solving Eqs (1, 2). This is in general a
difficult computational problem [32], but we have solved
it numerically for communities of up to 80 people using
Monte Carlo methods [33] (see Appendix C for details).
An example of a covariance matrix,

Cij = 〈σiσj〉obs − 〈σi〉obs〈σj〉obs (5)

and the corresponding coupling matrix Jij for a commu-
nity is shown in Fig 2.

Since real communities exhibit correlations with both
signs, the model in Eqs (3, 4) corresponds to an Ising
spin glass [30, 34]. Importantly, the couplings Jij are
not completely random, but are determined by the ob-
served correlations. Generally, the couplings Jij can take
on both positive and negative values, and frustration is
common (Appendix D).

Maximum entropy models are appealing both because
of their simplicity and because of their connections to
statistical physics. But these are not arguments for their
correctness. We could easily imagine, for example, that
there are important multibody interactions among indi-
viduals, and in this case we could not give an accurate
description of the joint distribution by matching pairwise

correlations alone. To test these models we can com-
pute higher order statistical quantities, and ask if these
agree with the data. Importantly, once we have matched
the one–body and two–body marginals, there are no free
parameters left to adjust, so we are not “fitting” these
higher order structures—either we get them right or we
get them wrong. We focus here on two such structures,
the triplet correlations and the distribution of how many
people tweet about each keyword.

For every distinct group of three users in a network,
we can define the triplet correlation

Cijk = 〈(σi − 〈σi〉)(σj − 〈σj〉)(σk − 〈σk〉)〉. (6)

These correlations typically are quite small (C ∼ 0.01)
but can be estimated with fractional errors ∼ 10% given
the sizes of our data sets (Appendix E). In Fig 3 we show
the comparison of predicted vs observed triplet correla-
tions, in one sub–community of 22 users. Results for
many other sub–communities are similar, with predic-
tion errors on the same scale as our measurement errors,
although in certain communities the pairwise model fails
to capture some aspects of three point correlation struc-
ture (see Fig 13 in Appendix E for examples).

A different way of assessing higher order structure in
the network is to ask about the fraction of users that
participate in a conversation,

Q =
1

2
+

1

2N

N∑
i=1

σi. (7)

If the users tweet independently, then for large N we
would see a Gaussian distribution of Q, and even for
smaller communities the tail at large Q would be very
restricted. We see in Fig 4 that the observed distribution

FIG. 3: Triplet correlations. Predicted three point
correlations from our model vs the empirical value of the
three point correlations estimated from data, for one sub–
community. Error bars typically are ∼ 10% of the measured
values; see Appendix E.
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FIG. 4: Distribution of simultaneous activity. Proba-
bility that a fraction Q of users tweet about a particular key-
word. Empirical data (red), maximum entropy model (green),
and a maximum entropy model including only one–body con-
straints (cyan).

of Q is quite broad, with an extended tail, and that this is
captured within error bars by our model. Thus, although
we match only correlations among pairs of users, we can
predict, quantitatively, the probability that many users
will be active in the same conversation.

There are many reasons why a pairwise maximum en-
tropy model should not work. In particular, even in the
absence of explicit combinatorial effects, averaging over
many unseen factors that affect all the users, or different
subsets of users, will generate effective multibody inter-
actions in the joint distribution. These effects may be
present, but what we see from Figs 3 and 4 is that we
don’t need to make explicit models of these effects in or-
der to generate quantitative predictions for the joint dis-
tribution of social behaviors. These models, while simple,
are sufficiently precise that it makes sense to take them
seriously as statistical physics problems and ask what we
can learn about the collective behavior of the network.

IV. TOWARD A PHASE DIAGRAM

A crucial lesson of statistical physics is that the param-
eter space of models for systems with many interacting
degrees of freedom breaks up, at large N , into distinct
phases with qualitatively different behaviors. The bound-
aries between these phases become sharp as N →∞, and
on the boundaries the behavior of the system is a singu-
lar function of its parameters. Here we try to locate real
networks of Twitter users in relation to these critical sur-
faces in parameter space.

Maximum entropy models have the form of a Boltz-
mann distribution, and so we can think about an ‘energy
landscape’ as a function of the social state σ; energy min-
ima correspond to probability maxima, identifying states
that are favored by the network. Remarkably, every sub–

community we have examined has the same dominant
energy basin that contains the vast majority of the data.
This basin is defined by silence in the sub–community
(σi = −1 for all i). This in turn allows for an enormous
simplification of our data, as we can define an order pa-
rameter by the overlap with the silent state [30]. The
overlap with silence is just the negative of the usual mag-
netization, but it’s important that we don’t choose the
magnetization arbitrarily.

Once we have an order parameter, we can define, in
the usual way, a conjugate field and a susceptibility of
the order parameter to this field; the susceptibility will
be equal to the variance of the order parameter. Again
this example is relatively simple—the conjugate field is
a uniform “magnetic field” ∆h that biases each user to
tweet or remain silent, and the susceptibility χ is propor-
tional to the variance of the fractional activity Q defined
above [Eq (7)]. In Fig 5, we track χ vs ∆h in a sub–
community of 46 people (Fig 1).

As we can see in Figure 5, the system exhibits a large
peak in susceptibility at a small forcing field. This is a
collective effect, and would not present if the users all
tweeted independently (as shown in cyan). This peak in
susceptibility is reminiscent of what we see at a critical
point, where incremental changes in the control parame-
ter lead to disproportionately large changes in observable
behavior. Relative to the width of the peak, the system
seems to be poised quite close to this near–critical point.

One may object that the language of “applied fields”
involves taking the mapping between maximum entropy
models and their physical counterparts a bit too seriously.
As an alternative, we can bias the system by choosing
individuals out of the community and conditioning the
distribution of all other users on these individuals being

FIG. 5: Susceptibility. Predicted susceptibility against a
forcing field for the community of 46 people shown in Fig 1.
Pairwise maximum entropy model (black) and independent
model (cyan); red line indicates ∆h = 0, corresponding to
the parameters inferred for the real network.
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in the state σµ = 1 (tweeting). Mathematically, if we
hold σµ = 1 for µ = µ1, µ2, · · · , then for all the remaining
users the joint distribution still is given by Eqs (3, 4), but
with hi → hi +

∑
µ Jiµ [29].

The fact that forcing some users to be active will bias
the mean activity of other users is not surprising. More
interesting is that the variance of total activity in the
other users changes nonmonotonically as a function of
the number of users that we force, echoing the depen-
dence of susceptibility on applied field. In all the sub–
communities that we have examined, the peak in vari-
ance occurs upon forcing just a handful of users, often
just one; there is no indication that this depends system-
atically on N . We conclude that many Twitter commu-
nities are within one user of being near maximal variance
in activity [35]. This is a direct but perhaps more intu-
itive analog of the peak in susceptibility for very small
applied fields (Fig 5).

If we have a statistical mechanics, then it should be
possible to construct a thermodynamics. Much of ther-
modynamics is about the tradeoff between energy and
entropy, and it might be unclear what this has to do with
tweeting. But in the Boltzmann distribution, energy is
just the (negative) log probability, and (microcanonical)
entropy counts the number of states that have this prob-
ability. Intuitively, social states in which more users are
active have lower probability (Fig 4), but until fully half
the users are active there are more distinct states avail-
able at larger Q [Eq (7)]. Thus, less probable (higher
energy) states are more numerous (higher entropy). We
explore this tradeoff between probability and numerosity
following Refs [21, 36, 37]; for details see Appendix F.

The maximum entropy model assigns to each state σ
an energy Eσ, through Eq (4). We would like to count
the number of states that have a particular energy, or
range of energies, but this involves making bins along
the energy axis. A simple alternative is to count the
number of states with energy less than E, so we define
the entropy

S(E) = ln

(∑
σ

Θ(E − Eσ)

)
(8)

where Θ(x) is the step function: Θ(x > 0) = 1, Θ(x <
0) = 0. We recall that the temperature is the derivative
of the entropy with respect to energy. In our case we
have T = 1, from Eq (3), and so the condition

dS(E)

dE
= 1 (9)

picks out the typical energy of the system. The fluctu-
ations around the typical energy are related to the heat
capacity C,

〈(δE)2〉 =

(
− d2S

dE2

)−1
= C (10)

again with T = 1. We expect that energies and entropies
both are extensive, that is proportional to system size N

FIG. 6: Entropy vs energy. S(E)/N from Eq (8), plotted
vs E/N , for a sub–community of N = 52 users. Red line
indicates average energy of system, blue line indicates line of
slope 1 fit around the actual energy.

for large N , so that C itself also is of order N . Then the
fractional fluctuations 〈(δE)2〉/E2 ∼ 1/N vanish rapidly
for larger systems. At many critical points, d2S/dE2

vanishes, the specific heat C/N diverges with N , and the
variance of energy fluctuations are similarly large.

Starting with our maximum entropy model, we can
find entropy as a function of energy numerically using
Wang-Landau sampling [38]. An example plot of S/N vs
E/N is shown in Fig 6 for a sub–community of 52 people.
We see that the entropy is very nearly a linear function
of energy across a wide range of energies near the typical
value. It is not merely that d2S/dE2 vanishes at a single
critical point, but it is very nearly zero all together. This
unusual form of critical behavior was seen previously in
the analysis of activity in networks of neurons [36].

V. COARSE–GRAINING SOCIAL DATA

The idea that social networks might be poised near a
critical point is intriguing. Related notions of critical-
ity have emerged from the analysis of neural networks,
but this has also generated controversy. It is in principle
possible that inference from finite data sets, using the
maximum entropy framework, is biased toward finding
models near criticality, or that some of the phenomenol-
ogy which seems to be a signature of criticality could
have more mundane explanations [39–42]. One response
to these concerns is to look very closely and ask whether
the alternatives to criticality really explain the data in de-
tail, as discussed for a population of neurons in Ref [21].
But the approach to a critical point seems so dramatic
that we should be able to give a more direct argument.

In our modern view, a critical point can be defined
as a nontrivial fixed point of the renormalization group
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FIG. 7: Variance Scaling. The variance of σ
(k)
i against

cluster sizeK = 2k. Dotted lines indicate linear and quadratic
scaling; red line indicates a power–law fit with exponent 1.49±
.02. Error bars are the standard deviation over random halves
of the data. Fit obtained by nonlinear least squares with
reduced χ2 = 0.26.

(RG) [6, 43]. In the standard formulation, microscopic
variables live in real space, and have their dominant in-
teractions with near neighbors. The RG involves aver-
aging over spatial neighborhoods [44], and then tracking
the distribution of these coarse–grained variables as a
function of the averaging scale. A crucial result is that
the joint distributions of coarse–grained variables become
simpler as the scale becomes larger, so that most inter-
actions are “irrelevant”; models of macroscopic behavior
thus are simpler and more universal than the underly-
ing microscopic details. More subtly, there are special
parameter settings such that the joint distribution of
coarse–grained variables is invariant to the scale of av-
eraging. This is a fixed point of the RG transformation,
and these fixed points correspond to critical points.

In order to explore RG ideas in more complex sys-
tems we have to find coarse–graining strategies that do
not lean on the locality of interactions. Recent work on
large populations of neurons suggests that a natural ana-
log of averaging with spatial neighbors is averaging with
maximally correlated partners [45], and we follow this
approach here. In brief, we walk through the network,
identifying maximally correlated pairs i, j∗(i), and then
add the corresponding variables together,

σ
(2)
i = σ

(1)
i + σ

(1)
j∗(i)

, (11)

where superscripts refer to the level of coarse-graining.
We then repeat this for the next most correlated pair
of people and so on, until the original N variables have
become N/2. If we iterate this full procedure k times,
then we turn our data on N people into data on N/K
clusters, each with K = 2k people in them.

If correlations are weak, the central limit theorem

drives the activity of the clustered variables toward the
normal distribution as the clustering scale increases.
Near criticality, the self–similar structure of correlations
should evade the central limit theorem, driving the distri-
bution toward a non–Gaussian fixed point. In the same
way that the central limit theorem predicts a linear scal-
ing (for example) of the variance with the number of
variables that are being summed, the approach to non-
trivial fixed points typically is associated with different
scaling behavior. It is this scaling behavior that we are
looking for in the data.

The means of the coarse–grained variables scale lin-
early with the cluster size K, so the first interesting ques-
tion concerns the variance. For independent variables
the variance will be linear in the cluster size K, while
for perfectly correlated variables the growth would be
quadratic. In Fig 7 we show the behavior of the variance
vs cluster size in a community of 583 people, and we see
that the variance has near perfect scaling at an intermedi-
ate exponent ∼ 1.5. This intermediate scaling indicates
that there is nontrivial structure to the correlations in
the dataset, independent of the level of coarse–graining.
When comparing across different communities, we see a
range of scaling exponents between 1.29 and 1.69. We
could not discern any clear pattern or clustering in the
scaling of different communities. Although there is sig-
nificant variability across communities, the precision of
scaling within communities is surprising.

We can also look at the structure of correlations within
clusters. In the analogy with physical critical points, we
expect correlations to have the same structure at each
stage of coarse–graining. In translation invariant systems
with spatially local interactions, this corresponds to a
scale-free correlation function, or equivalently a power–
law dependence of the spectrum on momentum. In our
systems, the closest analogue to this correlation function
is the spectrum of the correlation matrix within clusters
[45, 46]. In Figure 8 we plot the averaged spectra of
cluster correlation matrices, for different clusters sizes K,
as a function of the fractional rank of the spectrum for the
same community as used in Fig 7. We stop at K = 128
to avoid contamination of the spectrum by finite sample
effects.

As we can see in Figure 8, the clusters seem to have a
correlation spectrum that is independent of the size of the
cluster. That is, plotted as a function of fractional rank,
the spectra collapse onto a single curve that is indepen-
dent of the degree of coarse-graining, with the exception
of the largest eigenvalue of each cluster. Furthermore,
these spectra seem to exhibit a power law dependence as
a function of their fractional rank for a large range. Al-
though noisy, even this largest eigenvalue seems to have
a regular behavior as a function of cluster size. The cor-
relations are scale free both in the sense that they are
independent of the degree of coarse-graining and in the
sense that they have a power law form.
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FIG. 8: Correlation Spectra. Correlation spectra of var-
ious cluster sizes plotted as a function of the fractional rank.
Error bars are standard deviations across different clusters
and random halves of the data. Cyan line is a power–law
with exponent −0.438 ± 0.015.

VI. DISCUSSION

The dynamics of human behavior on social media are
complex, and what we have done here is a first try.
Nonetheless, we find it striking that the social states
of these networks have relatively simple, orderly behav-
ior that can be captured in the language of statistical
physics. The joint distribution of activity in a commu-
nity is described quite accurately by models that match
only pairwise correlations, and are equivalent to famil-
iar Ising models. More deeply, the parameters of these
models seem not to be arbitrary, but rather are poised
near critical surfaces, and we see independent evidence of
this near–criticality in the scaling behavior of the system
under coarse–graining.

It is an old idea that complex systems, far from equilib-
rium, might organize themselves to states that are anal-
ogous to critical states in equilibrium statistical physics
[47]. One can think of many reasons why such an orga-
nization might be advantageous: the system becomes in-
finitely sensitive to (some) small signals, distant parts of
the system can exchange information, the system grows
long time scales, and more, although in different con-
texts the same features might be disadvantageous. Im-
portantly, all of these features arise together at the crit-
ical point, and so it is necessarily difficult to disentangle
which ones are actually functional.

There is an intuitive if non-rigorous connection be-
tween criticality and some familiar properties of social
systems. Specifically, the high susceptibility and infor-
mation transfer in critical networks evoke the tendency
of online content to ‘go viral’ or to very quickly spread
over a long distance in a social network. Just as small
perturbations become amplified in critical networks, a

social phenomenon initiated by a small group of people
can quickly become amplified in online social networks.

While it is tempting to suggest that the proximity
of a critical point is the “mechanism” by which things
go viral on a social network, it is difficult to imagine
a mechanism for social systems to tune themselves to
this kind of critical point. Generically, any system ca-
pable of producing such complex behavior will likely be
controlled by many different parameters, and critical dy-
namics will only hold in a relatively small section of this
high-dimensional space. It is unclear how an online so-
cial system would naturally tune itself to this area of its
parameter space. Nonetheless, this is what we see.

As far as we know, neither the maximum entropy
method nor the renormalization group has been used pre-
viously in thinking about social networks. As the social
science community accumulates more “big data,” more
such tools will be needed. We hope to have made clear
that these relatively simple ideas, grounded in statisti-
cal physics, are quite successful in revealing interesting
regularities of human behavior in these social systems.
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Appendix A: Acquiring data

Raw data were scraped from publicly available tweets
using the Twitter API (https://developer.twitter.com/).
As described in the main text, for each dataset a root
user was chosen and a social network was built out to
second degree from that root. That is, we find who the
root user follows, and then who those people follow; our
examples of social networks are built from those con-
nections. These networks were then reduced, identify-
ing sub–communities using the Clauset-Newman-Moore
algorithm [31]. The resulting sub–communities contain
between 8 and 80 people, and vary considerably in topol-
ogy, as summarized in Fig 9.

Mean degree (at left in Fig 9) represents the typical
number of social connections that a given individual in a
sub–community has within that sub–community. Below
a sub–community size N ∼ 40 people, the mean degree
K grows roughly linearly with the system size. For com-
munities larger than 40 people, there is no discernible
relationship between community size and the number of
social connections. Interestingly, while one might imag-
ine that these two types of social communities have differ-
ent behaviors, in the communities that we have examined
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FIG. 9: Topological Characteristics. For 106 sub–
communities with inferred pairwise max-ent models. (Left)
Mean degree of social network K against community size N
for all communities. (Right) Distribution of K/N .

max-ent models are capable of describing both types of
systems.

Appendix B: Defining keywords

We define keywords to be words that are used many
times while staying localized in a short period of time.
Of course, we then must define how many times a word
must be used and how localized a word must be to be
considered a keyword. We use the standard deviation
in the times that a word is used to quantify the degree
to which a word is localized in time. These two criteria
(number of times used, standard deviation in time) define
a two dimensional space in which we can place each word
that is used in a dataset. Our task is to find cutoffs in this
space to define a clear set of keywords. Unfortunately,
this is hard. All datasets examined are approximately
Zipfian [48], which means that there is no clear scale for
usage, making a non-arbitrary cutoff for the number of
times a word is used quite difficult.

The distribution of standard deviation in time for
words is more interesting. We show the distribution of
the standard deviation in time for language used in a
dataset of 651 people in Fig 10. As we can see in Fig
10, this distribution has two peaks, one corresponding
to words that are used in a very short amount of time
(far left) and words that are used with a standard devia-
tion in time of around 500 days. The second peak begins
with a kink in the distribution at a standard deviation of
around 200 days. This second peak corresponds to words
that are used independent of context, such as the staples
of standard English vocabulary (‘the’, ‘she’, etc). Obvi-
ously, we do not want to include such words as keywords,
as they are independent of context, and what makes key-

words interesting is that they are highly contextual. We
therefore bound the cutoff in standard deviation in time
to be well clear of this second peak in Fig 10.

The statistics of word usage do not provide more de-
tailed guidance for how to define keywords. As such, we
examined the data at a range of different definitions for
keywords [35], and generally found that the qualitative
nature of results did not change with different definitions
of keywords. For the purposes of presenting this data, we
choose a definition for keywords that attempts to maxi-
mize the number of clearly meaningful data points. The
exact parameters used for the datasets presented here
are a cutoff in standard deviation in time of 130 days
and a requirement that the word must be used at least
10 times in the data. In our datasets, this is generally
sufficient to obtain on the order of 10 times the number
of keywords as there are people in the dataset while still
yielding generally comprehensible keywords.

Appendix C: Maximum entropy models

The maximum entropy method has a long history, and
has received new attention in efforts to build statisti-
cal mechanics descriptions of biological networks directly
from data. Much of what we need thus is well known
in some communities. To make the discussion accessible
to a wider community, we provide some review of these
ideas here. We start with geneal ideas and proceed to
the specifics of our problem.

We recall that entropy, in addition to its thermody-
namic meaning, provides the unique measure of available
information consistent with simple and plausible condi-
tions [49]. Distributions with larger entropy thus describe
variables about which we know less, a priori. Maximiz-
ing the entropy is then a strategy for building models
that inject as little structure or knowledge as possible, as
first emphasized by Jaynes [25, 26]. More specifically, we

FIG. 10: Distribution of Standard Deviations in Time
of Word Usage. For a dataset of 651 people.
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want to insist that our models match certain features of
the data, but otherwise have as little structure as possi-
ble.

In a system with states σ, we can construct features
fµ(σ), for µ = 1, 2, · · · , K. Then if we are trying to
make a model of the probability distribution P (σ), we
insist that the average of these features in the model
matches those seen experimentally,

〈fµ(σ)〉expt =
∑
σ

P (σ)fµ(σ), (C1)

for each µ. Among the distributions that obey this
matching condition, we want to choose the one that max-
imizes the entropy

S[P (σ)] = −
∑
σ

P (σ) logP (σ). (C2)

To solve the constrained maximization problem we intro-
duce Lagrange multipliers and define

S̃[P (σ)] = −
∑
σ

P (σ) logP (σ) +
∑
µ

λµ

(
〈fµ(σ)〉expt −

∑
σ

fµ(σ)P (σ)

)
+ λ0

(
1−

∑
σ

P (σ)

)
, (C3)

where the Lagrange multipliers λµ correspond to each
constrained feature and the term proportional to λ0 con-
strains the distribution to be normalized. Now we can
search over all distributions, and adjust the values of the
Lagrange multipliers at the end to be sure that the con-
straints are satisfied.

To maximize S̃[P (σ)], as usual we take the derivative
and set it to zero,

∂S̃[P (σ)]

∂P (σ)
= 0; (C4)

we can verify that the second derivatives are negative so
that we really are finding a maximum of the entropy. The
solution is

P (σ) =
1

Z
exp

(
−

N∑
µ=1

λµfµ(σ)

)
, (C5)

where the partition function Z absorbs λ0 and thus de-
pends implicitly on the values of all the other Lagrange
multipliers,

Z =
∑
σ

exp

(
−

N∑
µ=1

λµfµ(σ)

)
. (C6)

While Equation (C5) gives the correct form of the max-
ent model, it glosses over a major sticking point, which
is that the correct values of the Lagrange multipliers λµ
must be determined. This is a difficult computational
problem [32].

We use a method based on Monte Carlo sampling.
Briefly, we simulate the model with some set of param-
eters {λµ} and then examine the expectation values of
the observables fµ, computed as averages over the Monte
Carlo samples in the simulation epoch labelled by t. We
then adjust the parameters by a factor proportional to
the error [20, 22], so that the basic learning step is

λµ(t+ 1) = λµ(t)− η
[
〈fµ〉t − 〈fµ〉expt

]
, (C7)

where η is a learning rate. For discussions about conver-
gence see Refs [50, 51]. We iterate until the differences
between model and observed expectation values are com-
parable to the errors in the observed expectation values.

The expensive part of this procedure is generating new
Monte Carlo samples for each set of parameters. To
speed up this process we use the histogram Monte Carlo
method, which allows us to recycle Monte Carlo samples
generated with parameters λ to estimate features of the
distribution parameterized by a different set of parame-
ters λ′ [33, 52].

In our particular case, the features that we choose are
fµ = σi and fµ = σiσj , for all values of i and j that share
a social tie. Constraining the expectation values of these
features corresponds to fixing the probability that indi-
vidual i participates in a Twitter conversation, and the
correlations between participation by individuals i and j.
With these choices, it is convenient to think of the La-
grange multipliers as “effective fields” hi and “couplings”
Jij , and we arrive at the form of the model shown in Eqs
(3, 4) of the main text. As indicated above, we need
to follow the Monte Carlo procedure to arrive at values
of these parameters given our measurements of 〈σi〉 and
〈σiσj〉.

It is useful to think about a null model in which we
constrain only the probabilities that individuals partici-
pate in a Twitter conversation, but ignore correlations.
Then the maximum entropy model has the same form as
in Eqs (3, 4), but with all Jij = 0 and

hi = arctanh(〈σi〉). (C8)

This model is also equivalent to the assumption that each
individual makes independent decisions about whether to
tweet.
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FIG. 11: Characteristics of Coupling Matrix. (Top)
Distribution of couplings Jij for the community in Fig 2.
(Bottom) Distribution of the product of all interactions from
closed social triangles in the same community. Approximately
30% of all possible triangles are frustrated.

Appendix D: Energy landscapes

The model laid out in Eqs (3) and (4) is similar to
canonical models of spin glasses. Spin glasses tend to
have many minima in their energy landscape due to frus-
tration [30], which occurs when there are couplings of
mixed sign in the Hamiltonian, competing with one an-
other. This in turn leads to many metastable states in
the energy landscape.

We can assess the complexity of the energy landscape
by measuring how frequently frustration occurs. We ex-
amine this by looking at the distribution of the prod-
uct of all coupling terms representing a social triangle
(where three people all have social ties to one another)
in the communities. When the product of these interac-
tion terms is positive, there exists a social configuration
that can minimize all relevant terms in the Hamiltonian.
When this product is negative, then no state can mini-
mize all relevant terms and the system is frustrated. We
show an example of the distribution of couplings Jij and
the distribution of the product of couplings from social
triangles in Fig 11. As we can see, there are a significant
number of frustrated triangles. This is true for all the
communities that we examined.

We can also evaluate the complexity of the energy land-
scape by directly estimating the number of metastable
states in the energy landscape, which we do by moving
“downhill” in energy from each of 105 Monte Carlo sam-
ples. We can then see how the number of metastable
states scales with the size of the system. We show this
relationship in Fig 12 for all 106 communities we exam-
ined. Over the range that we can observe, the number of
metastable states increases roughly exponentially with
system size, albeit with considerable variation from in-
stance to instance. If this pattern persists into the ther-

modynamic limit it would put the energy landscape of
these systems into the very complex class identified for
the mean–field spin glass [30].

Appendix E: Accuracy of three point correlations

In Figure 3 of the main text, each three point corre-
lation Cijk carries an empirical uncertainty that can be
estimated by bootstrap. The shear quantity of possible
three point correlations in a heterogenous system makes
it difficult to evaluate the accuracy of our predictions,
so here we bin the three point correlations by their em-
pirical values and then compare the root mean square
error in prediction by the pairwise max-ent model to the
root mean square uncertainty in the data. In Figure 13
we show two examples of these errors. Data from the
community on the left is shown in Fig 3 of the main text.

For the community on the left of Fig 13, the prediction
error is of the same order of magnitude as the measure-
ment error, indicating that the pairwise max-ent model
is able to capture three point correlations almost as well
as the data allow. The bottom of Fig 13 shows the cu-
mulative distribution of three point correlations. As we
can see, the accuracy in the top of figure 13 covers the
bulk of this distribution. However, for the community
shown on the right of Fig 13, the prediction error from
the maximum entropy model is significantly larger than
the intrinsic error in the data. In short, for the commu-
nity on the right, the pairwise maximum entropy model
is not capable of accurately reproducing 3 point correla-
tions to the precision that the data allows. This does not
mean that the maximum entropy model is incapable of
making useful predictions on the three point correlations.
Indeed, for the community on the right, the Pearson cor-
relation coefficient between the empirical and predicted
values of Cijk is 0.93, which would normally be viewed as

FIG. 12: Number of Metastable States. Number of
metastable states, estimated as described in the text, for each
of the communities that we analyzed.
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FIG. 13: Cijk Prediction Error. Top shows the root
mean square error for predictions of three point correlations
from the pairwise max-ent model (green) as well as the root
mean square uncertainty for empirical three point correlations
(red). Data were binned to compute root mean square errors.
Bottom shows cumulative distribution of empirical three point
correlation values. Left and right represent data from two
different communities (data from left shown in Fig 3).

a success, even if we do not reach the maximum possible
accuracy.

It is unclear what determines how well a pairwise
model is capable of fitting data from a given commu-
nity, and we suspect that variation between communities
could be a fruitful area of study.

Appendix F: Thermodynamics redux

If we can take our models seriously, then as the net-
works we study become larger the description in terms
of statistical mechanics should imply an analog of ther-
modynamics. We follow Refs [21, 36, 37] in this con-
struction, and for completeness we recall the arguments
presented there.

The essential step is to write the partition function not
as a sum over states but as an integral over the density
of states,

Z =
∑
σ

e−E =

∫
dEe−Eρ(E), (F1)

where

ρ(E) =
∑
σ

δ(E − Eσ). (F2)

We can integrate by parts to yield an expression in terms
of the cumulative density of states, and from there the
micro-canonical entropy [Eq (8)],

Z =

∫
dEeS(E)−E . (F3)

We then scale the energy per node ε = E/N and the
entropy per node s = S(E)/N , which gives us

Z = N

∫
dεeN(s(ε)−ε) =

∫
dEe−Nf(ε), (F4)

where f(ε) = ε−s(ε), is the free energy per particle. The
claim that

lim
N→∞

S(E)/N = s(ε) (F5)

is the claim that a thermodynamic limit exists, which is
far from obvious. But if it does exist, we can continue.

If we take the limit N →∞, we enter into the domain
of Laplace’s approximation, where Z will be dominated
by the minima of f . These minima are given by the
solutions ε∗ such that:

df

dε

∣∣∣∣
ε∗

= 0 =⇒ ds

dε

∣∣∣∣
ε∗

= 1 (F6)

This is true for all systems, and is another way of defin-
ing temperature[36, 53], which we have set to be 1 in
our discussion. Expanding to second order (as the first
derivative disappears at the minima), we have that:

Z ≈ Ne−Nf(ε
∗)

∫
dε exp

(
N

2
(ε− ε∗)2 d2s(ε)

dε2

∣∣∣∣
ε∗

)
(F7)

In this equation, it seems that the term outside the in-
tegral provides a contribution from the typical energy
ε∗, while the term inside the integral bounds the devi-
ations from that typical energy. Crucially, the size of
these deviations is controlled by the second derivative of
the entropy with respect to the energy. When that sec-
ond derivative is small, deviations from the typical energy
will be large. This is a critical point.

FIG. 14: Heat Capacity Heat Capacity (equation F8) as
a function of a temperature coupled to the inferred max-ent
Hamiltonian. Red Line indicates actual temperature (T = 1).
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The connection between the microcanonical entropy
and the deviations from a system’s typical energy is re-
alized in the heat capacity, which can be expressed both
in terms of the second derivative of the microcanonical
entropy or in terms of the variance of the energy:

CT = N

(
− d2S

dE2

)−1
= σ2

E (F8)

Where σ2
E is the variance of the energy.

A nearly linear entropy should correspond to a large
value of the heat capacity. We can see this in Fig 14,
where we simulate the system shown in Fig 5 with a
Hamiltonian scaled by various fictitious temperatures
H → H/T . In Fig 14, the real system (at T = 1) is
slightly on the low temperature side of the peak in the
heat capacity. A peak in the heat capacity is another typ-
ical sign of criticality in physical systems, and it should
increase our confidence that the systems examined here
are near a critical point.
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