Skip to main content

Maximum attainable field-free molecular orientation of a thermal ensemble with near-single-cycle THz pulses

Author(s): Liao, Sheng-Lun; Ho, Tak-San; Rabitz, Herschel; Chu, Shih-I

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr16j7r
Abstract: Recently, single-cycle THz pulses have been demonstrated in the laboratory to successfully induce field-free orientation in gas-phase polar molecules at room temperature [Phys. Rev. Lett. 107, 163603 (2011)]. In this paper, we examine the maximum attainable field-free molecular orientation with optimally shaped linearly polarized near-single-cycle THz laser pulses of a thermal ensemble. Large-scale benchmark optimal control simulations are performed, including rotational energy levels with the rotational quantum numbers up to J = 100 for OCS linear molecules. The simulations are made possible by an extension of the recently formulated fast search algorithm, the two-point boundary-value quantum control paradigm, to the mixed-states optimal control problems in the present work. It is shown that a very high degree of field-free orientation can be achieved by strong, optimally shaped near-single-cycle THz pulses. The extensive numerical simulations showed that the maximum attainable J-dependent field-free orientation (equal to 0.714 for J = 60 and 0.837 for J = 100 at 100 K) in the near-single-cycle THz pulse region is close to 92% of the corresponding optimal bound that can be attained by arbitrarily long pulses. It is also found that a smaller amplitude for the optimal control field corresponds to a smaller J (e.g., approximate to 0.005 a.u. for J = 60 and approximate to 0.01 a.u. for J = 100) in the model simulations. The latter finding may underline the actual experimental performance of the field-free molecular orientation, since presently the available amplitude of single-cycle THz pulses can only reach slightly beyond 20 MV/cm (approximate to 0.0038 a.u.). DOI: 10.1103/PhysRevA.87.013429
Publication Date: 25-Jan-2013
Citation: Liao, Sheng-Lun, Ho, Tak-San, Rabitz, Herschel, Chu, Shih-I. (2013). Maximum attainable field-free molecular orientation of a thermal ensemble with near-single-cycle THz pulses. PHYSICAL REVIEW A, 87 (10.1103/PhysRevA.87.013429
DOI: doi:10.1103/PhysRevA.87.013429
ISSN: 1050-2947
Pages: 013429-1 - 013429-7
Type of Material: Journal Article
Journal/Proceeding Title: PHYSICAL REVIEW A
Version: Final published version. Article is made available in OAR by the publisher's permission or policy.



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.