The Euler-Poisson System in 2D: Global Stability of the Constant Equilibrium Solution
Author(s): Ionescu, Alexandru D; Pausader, Benoit
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr16h1w
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ionescu, Alexandru D | - |
dc.contributor.author | Pausader, Benoit | - |
dc.date.accessioned | 2017-11-21T19:42:42Z | - |
dc.date.available | 2017-11-21T19:42:42Z | - |
dc.date.issued | 2013-01-01 | en_US |
dc.identifier.citation | Ionescu, Alexandru D, Pausader, Benoit. (2013). The Euler-Poisson System in 2D: Global Stability of the Constant Equilibrium Solution. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 761 - 826. doi:10.1093/imrn/rnr272 | en_US |
dc.identifier.issn | 1073-7928 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr16h1w | - |
dc.description.abstract | We consider the (repulsive) Euler-Poisson system for the electrons in two dimensions and prove that small smooth perturbations of a constant background exist for all time and remain smooth (never develop shocks). This extends to 2D the work of Guo [6]. | en_US |
dc.format.extent | 761 - 826 | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | INTERNATIONAL MATHEMATICS RESEARCH NOTICES | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | The Euler-Poisson System in 2D: Global Stability of the Constant Equilibrium Solution | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1093/imrn/rnr272 | - |
dc.date.eissued | 2012-02-14 | en_US |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1110.0798v1.pdf | 450.47 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.