Skip to main content

The Euler-Poisson System in 2D: Global Stability of the Constant Equilibrium Solution

Author(s): Ionescu, Alexandru D; Pausader, Benoit

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr16h1w
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIonescu, Alexandru D-
dc.contributor.authorPausader, Benoit-
dc.date.accessioned2017-11-21T19:42:42Z-
dc.date.available2017-11-21T19:42:42Z-
dc.date.issued2013-01-01en_US
dc.identifier.citationIonescu, Alexandru D, Pausader, Benoit. (2013). The Euler-Poisson System in 2D: Global Stability of the Constant Equilibrium Solution. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 761 - 826. doi:10.1093/imrn/rnr272en_US
dc.identifier.issn1073-7928-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr16h1w-
dc.description.abstractWe consider the (repulsive) Euler-Poisson system for the electrons in two dimensions and prove that small smooth perturbations of a constant background exist for all time and remain smooth (never develop shocks). This extends to 2D the work of Guo [6].en_US
dc.format.extent761 - 826en_US
dc.language.isoenen_US
dc.relation.ispartofINTERNATIONAL MATHEMATICS RESEARCH NOTICESen_US
dc.rightsAuthor's manuscripten_US
dc.titleThe Euler-Poisson System in 2D: Global Stability of the Constant Equilibrium Solutionen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1093/imrn/rnr272-
dc.date.eissued2012-02-14en_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1110.0798v1.pdf450.47 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.