To refer to this page use:
http://arks.princeton.edu/ark:/88435/pr15t3s
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hang, Fengbo | - |
dc.contributor.author | Yang, Paul C. | - |
dc.date.accessioned | 2019-04-05T20:02:48Z | - |
dc.date.available | 2019-04-05T20:02:48Z | - |
dc.date.issued | 2017-08 | en_US |
dc.identifier.citation | Hang, Fengbo, Yang, Paul C. (2017). Paneitz operator for metrics near S-3. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 56, doi:10.1007/s00526-017-1201-1 | en_US |
dc.identifier.issn | 0944-2669 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr15t3s | - |
dc.description.abstract | We derive the first and second variation formula for the Green’s function pole’s value of Paneitz operator on the standard three sphere. In particular it is shown that the first variation vanishes and the second variation is nonpositively definite. Moreover, the second variation vanishes only at the direction of conformal deformation. We also introduce a new invariant of the Paneitz operator and illustrate its close relation with the second eigenvalue and Sobolev inequality of Paneitz operator. | en_US |
dc.format.extent | 1 - 25 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Paneitz operator for metrics near S-3 | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1007/s00526-017-1201-1 | - |
dc.date.eissued | 2017-07-10 | en_US |
dc.identifier.eissn | 1432-0835 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1504.02032v1.pdf | 264.57 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.