Skip to main content

Haldane statistics for fractional Chern insulators with an arbitrary Chern number

Author(s): Wu, Yang-Le; Regnault, N; Bernevig, Bogdan A

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr15r7p
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWu, Yang-Le-
dc.contributor.authorRegnault, N-
dc.contributor.authorBernevig, Bogdan A-
dc.date.accessioned2020-10-30T19:20:38Z-
dc.date.available2020-10-30T19:20:38Z-
dc.date.issued2014-04-11en_US
dc.identifier.citationWu, Yang-Le, Regnault, N, Bernevig, B Andrei. (2014). Haldane statistics for fractional Chern insulators with an arbitrary Chern number. PHYSICAL REVIEW B, 89 (10.1103/PhysRevB.89.155113en_US
dc.identifier.issn1098-0121-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr15r7p-
dc.description.abstractIn this paper, we provide analytical counting rules for the ground states and the quasiholes of fractional Chern insulators with an arbitrary Chern number. We first construct pseudopotential Hamiltonians for fractional Chern insulators. We achieve this by mapping the lattice problem to the lowest Landau level of a multicomponent continuum quantum Hall system with specially engineered boundary conditions. We then analyze the thin-torus limit of the pseudopotential Hamiltonians, and extract counting rules (generalized Pauli principles, or Haldane statistics) for the degeneracy of its zero modes in each Bloch momentum sector.en_US
dc.language.isoen_USen_US
dc.relation.ispartofPHYSICAL REVIEW Ben_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleHaldane statistics for fractional Chern insulators with an arbitrary Chern numberen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1103/PhysRevB.89.155113-
dc.identifier.eissn1550-235X-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
PhysRevB.89.155113.pdf415.8 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.