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In this paper, we provide analytical counting rules for the ground states and the quasiholes of fractional Chern
insulators with an arbitrary Chern number. We first construct pseudopotential Hamiltonians for fractional Chern
insulators. We achieve this by mapping the lattice problem to the lowest Landau level of a multicomponent
continuum quantum Hall system with specially engineered boundary conditions. We then analyze the thin-torus
limit of the pseudopotential Hamiltonians, and extract counting rules (generalized Pauli principles, or Haldane
statistics) for the degeneracy of its zero modes in each Bloch momentum sector.
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I. INTRODUCTION

As the canonical example of topological order, the frac-
tional quantum Hall (FQH) effect was originally discovered in
two-dimensional electron gas subject to a strong perpendicular
magnetic field [1,2]. Recently, several groups demonstrated
numerically that these strongly correlated phases also exist
in a topological flat band characterized by a nonzero Chern
number C, even in the absence of a magnetic field [3–5]. This
discovery of the so-called fractional Chern insulators (FCI)
generated enormous interest [6,7]. Subsequent numerical
studies [8–17] quickly confirmed the presence of more intricate
single-component FQH states in lattice models [18–21],
such as the Read-Rezayi series [10–12,22,23] and the
composite-fermion states [14,15,24]. Powerful techniques
from the study of FQH, including density algebra [10,25–29],
entanglement spectrum [5,11,30,31], parton construc-
tion [32–34], and the Hamiltonian theory of composite
fermions [35,36], were introduced to understand the topologi-
cal ground state of FCI and the nature of its excitations [37–44].
Possible experimental realizations have also been proposed
[45,46].

Most of the above progress dealt with a topological band
with Chern number C = 1, which is essentially the same [18]
as the continuum FQH in a periodic potential [47–49]. The
strongly correlated physics in a C > 1 Chern band [50–54]
turned out much richer than the conventional FQH, due to
the interplay between topological order and lattice struc-
ture. [33,55–58] Barkeshli and Qi [55] mapped a C > 1 Chern
band to a C-component lowest Landau level (LLL) using
hybrid Wannier states [59], and suggested the possibility to
realize multicomponent FQH states in a single Chern band.
Numerical studies [53,56,57,60] indeed found clear signature
of such states, including the color SU(C) version of the
Halperin [61] and the non-Abelian spin-singlet states [62]
(NASS), but also identified qualitative deviations from these
states [56,57], which implies a more complex structure than
proposed in Ref. [55]. In a previous paper [63], we proposed
to understand these new features as the consequences of
a special set of boundary conditions associated with the
LLL mapping. In the simplest case, this alternative boundary
condition can be understood as a color-dependent magnetic
flux insertion. We demonstrated that the multicomponent LLL

in a new Bloch basis can be seen as a single manifold
with constant Berry curvature and Chern number C. Using
pseudopotential Hamiltonians, we constructed model states
for FCI with an arbitrary Chern number and found high
overlaps with the exact ground states. Crucially, our model
states correctly capture the anomalous features in the particle
entanglement spectrum of the C > 1 FCI that make our
states distinct from the conventional multicomponent FQH
states.

In this paper, we provide details of the mapping between
a Chern band and a multicomponent LLL, and demonstrate
the distinctive features of our pseudopotential Hamiltonian
due to the new boundary conditions. We construct, in a
C-component LLL, a momentum-space Bloch basis and a
hybrid Wannier basis that mimic the lattice counterparts.
Both bases entangle the real space and the internal color
space. Using the explicit one-body wave functions for the
bases, we derive the representation of the projected density
operators in both bases. We define model states as the exact
zero modes of the pseudopotential Hamiltonian built from
the projected density operators. As we demonstrated in our
previous paper [63], the Bloch basis is useful for numerical
studies as it preserves the full lattice symmetry. The hybrid
Wannier basis, on the other hand, facilitates the analysis of the
pseudopotential Hamiltonian.

We give a detailed analysis of the simplest bosonic
pseudopotential Hamiltonian for the Halperin color-entangled
states. We show that the pseudopotential Hamiltonian reduces
to almost classical electrostatics in the hybrid Wannier basis,
when we take the so-called thin-torus limit [64–78] and
carry out truncations motivated by previous numerical re-
sults [56,57]. This enables us to write down the form of its zero
modes in this limit. However, in contrast to most well-known
FQH states such as Laughlin and Read-Rezayi, a purely
classical thin-torus description is not possible. We pinpoint
the key difference from the conventional multicomponent FQH
due to a subtle twist in the hybrid Wannier states, and detail the
procedure to compute the total Bloch momentum of each zero
mode. The resulting algorithm correctly predicts the degen-
eracy of the FCI quasiholes in each lattice momentum sector,
without resorting to numerical diagonalization, and can be seen
as the extension of the generalized Pauli principle [79,80] to
the color-entangled states.
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II. ONE-BODY STATES IN A MULTICOMPONENT
LOWEST LANDAU LEVEL

In this section, we construct one-body bases in a multi-
component LLL that mimic the Bloch and the Wannier bases
in a Chern band with an arbitrary Chern number C.1 We
consider a C-component (generalized spin) electron moving
on a torus with a perpendicular uniform magnetic field. The
major difference between our approach and the usual treatment
of the multicomponent LLL problem is the adoption of a new
set of boundary conditions. This alternative choice entangles
together the C components and enables us to construct a single
manifold of Bloch states with Chern number C. In contrast
to the usual picture of multicomponent LLL as C separate
manifolds (one for each of the C components) each with
unity Chern number, our bases provide a natural foundation
for the mapping to a single Chern band with an arbitrary Chern
number C. The central result of this section is Eq. (27), the
expansion of the electron density operator in the Bloch basis.

A. Translations operators

We consider electrons with C internal (color) degrees of
freedom

|σ 〉, σ ∈ ZC. (1)

For simplicity, we work on a rectangular torus spanned by
Lx = Lxx̂ and Ly = Lyŷ, where Lx and Ly are the two
fundamental cycles of the torus, and x̂ and ŷ are orthonormal.
The torus is pierced by a magnetic field in the −êz direction,
B = ∇ × A = Bêz with B < 0. We denote by e < 0 the charge
of the electron. The magnetic length is lB = √

�/(eB). We
define the total number of fluxes Nφ penetrating the torus by

LxLy = 2πl2
BNφ. (2)

Here, we do not assume Nφ to be an integer as in the original
treatment of the Landau level on a toroidal geometry [81]. As
we will see soon, the alternative set of boundary conditions we
pick only requires

CNφ ∈ Z. (3)

This integer is equal to the dimension of the one-body Hilbert
space in the lowest Landau level. We define the magnetic
translation operator

T (a) = e−ia·K/�, (4)

where

K = −i�∇ − eA(r) + eB × r (5)

is the guiding center momentum. The translation T (a) com-
mutes with the one-body Landau Hamiltonian H = (−i�∇ −
eA)2/(2m) but not with the translation T (b) at a different
displacement,

T (a)T (b) = T (b)T (a)eiẑ·a×b/l2
B . (6)

1In the following discussion, we assume C > 0 for simplicity. The
case of C < 0 can be handled by inverting, say, the x direction of the
Landau level.

As argued in Introduction, we need to make contact between
the multicomponent Landau level states and the Bloch states in
a Chern band. For the latter, we consider a single Bloch band
with Chern number C in a tight-binding model on a lattice with
Nx × Ny unit cells. The band has a total of NxNy one-body
states, one at each lattice momentum in the Nx × Ny Brillouin
zone (BZ). To make contact with this lattice system, we first
look in the Landau level for a pair of commuting translation
operators that also resolve an Nx × Ny BZ. To this end, we
tune the magnetic field to match the number of one-body states,

CNφ = NxNy, (7)

and we consider the magnetic translations over a fictitiousNx ×
Ny unit cell structure of the continuous torus, namely,

Tx = T (Lx/Nx), Ty = T (Ly/Ny). (8)

The operator Tx (respectively, Ty) has Nx (respectively, Ny)
different eigenvalues. As opposed to the C = 1 case, however,
for generic C they do not commute due to the Nφ/(NxNy) =
1/C flux over each fictitious plaquette,

TxTy = TyTxe
i2π/C. (9)

To compensate for this, we define the “clock and shift”
operators Q and P over the internal (color) Hilbert space by

P |σ 〉 = |σ + 1 (mod C)〉, Q|σ 〉 = ei2πσ/C |σ 〉. (10)

Both operators are unitary, and they satisfy

PQ = QPe−i2π/C. (11)

This leads to a pair of commuting composite operators

T̃x = TxP, T̃y = TyQ. (12)

We will refer to this pair as the “color-entangled” mag-
netic translation operators. For the (color-neutral) Landau
Hamiltonian, both operators are good symmetries, and they
resolve an Nx × Ny Brillouin zone once we specify the
boundary conditions. Notice that, in general, [T (Lx),T̃y] �= 0,
[T (Ly),T̃x] �= 0. This means that we have to abandon the usual
boundaries [81] T (Lα) = 1, α = x,y. Instead, we adopt the
color-entangled generalization T̃ Nα

α = 1, namely,

T (Lx)P Nx = T (Ly)QNy = 1. (13)

This alternative set of boundary conditions make it possible to
construct two sets of basis states in the one-body Hilbert space
with desirable properties spelled below.

B. Bloch and Wannier bases

We define the Bloch states |k〉 as the simultaneous eigen-
states of T̃x and T̃y within the LLL,

T̃α|k〉 = e−i2πkα/Nα |k〉, (14)

with k = (kx,ky) ∈ Z2. The NxNy states within the first
Brillouin zone

1BZ = [0..Nx) × [0..Ny) (15)

have distinct eigenvalues under T̃α , and they constitute the
Bloch basis in the NxNy = CNφ-dimensional Hilbert space
of the C-component LLL.
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We now look for the explicit wave function 〈x,y,σ |k〉 for
these basis states. We specialize to the Landau gauge A =
Bxŷ. Consider the states |X,ky〉 with X,ky ∈ Z defined by the
real- and internal-space wave function:2

〈x,y,σ |X,ky〉 = 1

(
√

πLylB)1/2

Z∑
m

δmod C
σ,X+mNx

× exp

{
i2π

(
XNy + kyC

C
+ mNφ

)
y

Ly

− 1

2

[
x

lB
− 2πlB

Ly

(
XNy + kyC

C
+ mNφ

)]2}
.

(16)

Here, X,ky are state labels taking integer values, while x,y are
real space coordinates taking continuous values, and σ ∈ ZC is
a discrete coordinate in the internal color space. It is not hard to
see that |X,ky〉 belongs to the lowest Landau level, as the above
wave function can be recast in the form f (x + iy,σ ) e−x2/(2l2

B ).
Moreover, we find that |X,ky〉 is periodic in X, but with a twist
in ky :

|X + Nx,ky〉 = |X,ky〉, |X,ky + Ny〉= |X + C,ky〉. (17)

These relations are reminiscent of the flow of hybrid Wannier
states in a Chern insulator [37]. Further, as we prove in Ap-
pendix A, the color-entangled magnetic translations [Eq. (12)]
have a representation on |X,ky〉 similar to the representation of
the lattice translations on the hybrid Wannier states, namely,

T̃x |X,ky〉 = |X + 1,ky〉, T̃y |X,ky〉 = e−i2πky/Ny |X,ky〉.
(18)

We thus refer to these states as the hybrid Wannier states
in the C-component LLL. It is easy to see the states with
X ∈ [0..Nx) and ky ∈ [0..Ny) are linearly independent. We
emphasize that unless Nx is divisible by C, these states are not
color eigenstates, in contrast to the states studied in Ref. [55].

We want to define the Bloch states in the LLL as a Fourier
sum of the hybrid Wannier states,3

|k〉 = |kx,ky〉 = 1√
Nx

Nx∑
X

ei2πXkx/Nx |X,ky〉. (19)

From Eqs. (17) and (18), we find that the simultaneous
eigenvalue equation in (14) indeed holds. These states are
periodic in kx , but only quasiperiodic in ky ,

|kx + Nx,ky〉 = |kx,ky〉, (20)

|kx,ky + Ny〉 = e−i2πkxC/Nx |kx,ky〉. (21)

2Here, we discuss the hybrid Wannier states |X,ky〉 for convenience.
We could also work with the alternative set of hybrid Wannier states
|Y,kx〉 (localized in the y direction) [37]. We do not assume anything
special in Nx versus Ny . In particular, we make no assumption in the
commensuration between Nx , Ny , and C.

3Here and hereafter, the summation of the shorthand form
∑N

a

stands for
∑N−1

a=0 .

The latter nonperiodicity signals the topological obstruction to
a periodic smooth gauge due to the nonzero Chern number of
a Landau level. 4

C. Projected density operator

The density operator projected to the lowest Landau level
plays a central role in the FQH physics, as it is used to define
the inter-particle interaction. As we now show, this operator
takes a particularly nice form in our Bloch basis.

By definition, the density operator of color σ at r = (x,y)
projected to the LLL is given by

ρ(r,σ ) =
BZ∑
k1

BZ∑
k2

|k1〉φ∗
k1

(r,σ )φk2 (r,σ )〈k2|, (22)

where φk(r,σ ) = 〈r,σ |k〉 is the wave function of the Bloch
state |k〉 defined in Eq. (19), and k1,k2 are each summed over
a full BZ.5 Since ρ(r,σ ) must have torus periodicity, we can
express it as a Fourier sum,

ρ(r,σ ) = 1

LxLy

∑
q

eiq·rρq,σ . (23)

Here, the wave vector q lives on the reciprocal lattice

q =
(

2πqx

Lx

,
2πqy

Ly

)
, (qx,qy) ∈ Z2. (24)

The projected density operator in momentum space for a single
color component σ is thus given by

ρq,σ =
BZ∑
k1

BZ∑
k2

|k1〉〈k2|
∫

dr e−iq·rφ∗
k1

(r,σ )φk2(r,σ ), (25)

where
∫

dr is over the torus [0,Lx) × [0,Ly). We define the
full projected density operator ρq by

ρq =
C∑
σ

ρq,σ . (26)

This operator is the building block of a color-neutral interacting
Hamiltonian. In Appendix B, we finish the integral in Eq. (25)
with the help of the sum over color σ , and prove the main
result of this section,

ρq = e−q2l2
B/4

BZ∑
k

e−i2πqx (ky+qy/2)/Nφ |k〉〈k + q|. (27)

It should be noted that when Nx is divisible by C, the integral
in Eq. (25) can be finished for each σ individually, without the

4We can perform a gauge transformation to make the Bloch states
periodic. However, the resulting wave function will not be smooth
in kx/Nx and/or ky/Ny in the continuum limit Nx,Ny → ∞. For
example, for ky ∈ [mNy..mNy + Ny) with m ∈ Z, we can take
|kx,ky〉 → ei2πkxmC/Nx |kx,ky〉. This transformation makes the state
periodic, but discontinuous at ky/Ny ∈ Z.

5Any BZ choice is fine, and the two BZs for k1 and k2 do not have
to be the same. It is easy to see that although |k〉 is only quasiperiodic
in ky , ρ(r,σ ) does not depend on the choice of BZ for k1 or k2, thanks
to the quasiperiodicity condition in Eq. (20).
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color sum. The above formula can be recast [using Eqs. (2)
and (7)] as

ρq =
BZ∑
k

|k〉〈k + q|
{

exp

[
π

2

LxLy

NxNy

(
q2

x

L2
x

+ q2
y

L2
y

)

− i2π
qx(ky + qy/2)

NxNy

]}C

. (28)

Note that the dependence on C enters only through the
exponent shared by all ρq and all terms in

∑
k.

D. Geometric phase structure

The above result suggests that the torus formed by the
Bloch states |k〉 is endowed with a rich geometric structure.
As usual, the Berry connection between the BZ points k and
k + q is defined as (the phase of) the inner product between
the periodic part of the Bloch states |k〉 and |k + q〉. This
amounts to the matrix element of the operator e−iq·r̂ between
the two states, where r̂ is the position operator. Notice that
this exponentiated position operator, when projected to the
lowest Landau level, is nothing but the full density operator
ρq in Eq. (26). Therefore we can interpret Eq. (27) as the
parallel transport in the momentum space implemented by the
projected density ρq.

Define the primitive vectors on the reciprocal lattice gx =
(2π/Lx,0) and gy = (0,2π/Ly), and the shorthand notations
ρα = ρq=gα

and Phase[z] = z/|z| for z ∈ C. At momentum
transfer q = gα , the (unitary) exponentiated Berry connection
resolves the band geometry,

Aα(k) ≡ Phase[〈k|ρα|k + gα〉] = e−i2πqx (ky+qy/2)/Nφ , (29)

while the norm

|〈k|ρα|k + gα〉| = e−q2l2
B/4 (30)

is the quantum distance between k and k + gα . Notice that the
quantum distance does not depend on k.6 The gauge-invariant
Berry phases can be extracted from parallel transport around
closed loops of |k〉 states over the BZ torus.

Given that we are interested in the Abelian Berry con-
nection, each contractible loop can be decomposed into a
product of loops around single plaquettes. Such plaquette
Wilson loops take a particularly nice form for the Bloch states
we constructed. Around the plaquette at k,

W�(k) ≡ Phase[〈k|ρxρy[ρyρx]−1|k〉] = ei2π/Nφ (31)

is independent from k. Further, we can define the Berry
curvature over a single plaquette [63] fk = 1

2π
� log W�(k),

where � takes the imaginary part in the principal branch
� log z ∈ (−π,π ]. We find that the BZ torus for the multi-
component Landau level has constant Berry curvature

fk = 1

Nφ

, (32)

6This is particular to the Landau level problem; in the tight-binding
situation, both the quantum distance and the Berry phase depend
on k.

and its Chern number is equal to the number of components

BZ∑
k

fk = NxNy

Nφ

= C. (33)

In addition to the contractible loops, there are two indepen-
dent noncontractible Wilson loops around the two fundamental
cycles of the torus, related to charge polarization. We define

Wx(ky) ≡ Phase
[〈0,ky |ρNx

x |0,ky〉
] = e−i2πkyC/Ny ,

Wy(kx) ≡ Phase
[〈kx,0|ρNy

y |kx,0〉] = ei2πkxC/Nx .
(34)

The geometric phases over the BZ torus are fully specified by
the following quantities

{W�(k)|k ∈ BZ},Wx(0),Wy(0). (35)

For example, Wx(1) can be obtained from Wx(0) times the
product of W�(k) around each of the Nx plaquettes between
ky = 0 and ky = 1 in the first BZ.

We can easily add a twist to the color-entangled boundary
conditions in Eq. (13),

T (Lx)P Nx = e−i2πγx , T (Ly)QNy = e−i2πγy . (36)

The twist angles γ = (γx,γy) ∈ R2 implement color-
independent magnetic flux insertions. We incorporate this
change by keeping (kx,ky) ∈ Z2, but applying

k → k + γ (37)

to every equation so far.

E. Twisted torus

The above results can be directly generalized to a twisted
torus. Instead of the rectangular torus spanned by Lx = Lxx̂

and Ly = Lyŷ, we consider a torus with twist angle θ , spanned
by

Lx = Lx sin θ x̂ + Lx cos θ ŷ, Ly = Lyŷ. (38)

The number of fluxes Nφ is now defined by

LxLy sin θ = 2πl2
BNφ. (39)

The reciprocal lattice primitive vectors gα are now defined by

gα · Lβ = 2πδαβ, (40)

and we have the wave vector k = kxgx + kygy , (kx,ky) ∈ Z2.
Once we change the wave functions of the hybrid Wannier
states in Landau gauge A = Bxŷ to

〈x,y,σ |X,ky〉 = 1

(
√

πLylB)1/2

Z∑
m

δmod C
σ,X+mNx

e−x2/(2l2
B )

× exp

[
2π

(
XNy + kyC

C
+ mNφ

)
x + iy

Ly

− iπ
Lxe

−iθ

NφLy

(
XNy + kyC

C
+ mNφ

)2]
,

(41)

all of the earlier results still hold with no essential modifica-
tions. In particular, the proof in Appendix B can be adapted
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straightforwardly (albeit with even more tedious algebra), and
in Eq. (27) the density operator requires no formal change
except for q = qxgx + qygy . For the rest of the paper, we
return to the rectangular torus. The results can be similarly
generalized to the twisted torus by simple substitutions.

III. PSEUDOPOTENTIAL HAMILTONIAN

With the one-body Bloch and hybrid Wannier bases at
hand, we move to the many-body interacting problem. Our
ultimate purpose is to build pseudopotential Hamiltonians for
FCI with arbitrary Chern number C. As demonstrated in the
last section, the multicomponent LLL resembles the Chern
band once we impose appropriate boundary conditions that
join together the C components. This link enables us to take
advantage of the well-developed pseudopotential formalism
in the LLL. We construct pseudopotential Hamiltonians (in
the same way as those of single-component LLL [82,83]) in
the LLL from the projected density operator ρq, and obtain
its zero modes through numerical diagonalization. Following
the usual practice in the FQH literature,7 we define these zero
modes at the FCI model wave functions.

Then, through the mapping between the Bloch states in
the LLL and on the lattice, we transcribe these LLL wave
functions to the lattice. The resulting trial wave functions
can be directly compared with the FCI ground states obtained
numerically for lattice Hamiltonians. As demonstrated in our
earlier paper [63], this approach yields model Hamiltonians
adiabatically connected to the microscopic lattice Hamilto-
nian, and leads to trial wave functions with the correct total
momentum on lattice and very high overlaps with the actual
FCI ground states. Our trial wave functions also reproduce
the anomalous particle entanglement spectrum as observed in
Ref. [57].

The question remains, however, how to predict the total
lattice momentum for the trial wave functions (including
quasiholes) without numerical diagonalization, similar to the
methods developed for the FQH [79,80]. For C = 1, this
problem was solved by two of us [10] by combining the
generalized Pauli principle [79,80] for single-component FQH
states (including quasiholes) with lattice folding. For C > 1,
we now have the LLL-to-lattice mapping. What we still
lack is a multicomponent version of the generalized Pauli
principle. References [84,85] studied this problem for the usual
boundary conditions. Due to our modifications to the boundary
conditions, their results do not directly apply here.

Fortunately, we can also extract the generalized Pauli
principle from the Hamiltonian in the thin-torus limit [64–66].
In this limit, the hybrid Wannier orbitals in the LLL become
isolated from each other. Specifically, we find from Eq. (16)
that the ratio between the width of the hybrid Wannier orbital
and the spacing between them scales as

width

spacing
∼ lB

2πl2
B/Ly

∼
√

Nφ

Ly

Lx

. (42)

7For example, the Laughlin states at ν = 1/3 on a torus can be
defined as the exact zero modes of the LLL-projected hollow-core
interaction.

Therefore, when the aspect ratio Lx/Ly satisfies

Lx

Ly

� Nφ, (43)

the hybrid Wannier orbitals are so separated that the projected
density operator becomes approximately diagonal in the hybrid
Wannier basis. As a result, the pseudopotential Hamiltonian
built from projected density operators also becomes approxi-
mately diagonal in the hybrid Wannier basis. (This is not true
for certain nonunitary states [86].) By analyzing the classical
electrostatics of the leading terms in the Hamiltonian, we can
obtain the quantum numbers of the Hamiltonian zero modes.
(For FQH with the usual boundary conditions, this was done
in Refs. [65,67,69].) After the Bloch mapping between FCI
and FQH, this will give us a counting rule for the degeneracy
of the FCI quasiholes in each lattice momentum sector.

In the rest of this section, we expand the new pseudopo-
tential Hamiltonian proposed earlier [63] in the Wannier basis,
and perform the necessary resummation to make it amenable to
proper truncation in the thin-torus limit. The actual truncation
and the analysis of the zero modes of the truncated Hamiltonian
is left for the next section.

A. Projected density in the hybrid Wannier basis

We obtain the projected density operator in the hybrid
Wannier basis by plugging the Fourier transform Eq. (19) into
Eq. (27),

ρq = e−q2l2
B/4

Nx∑
X

Ny∑
ky

e−i2πqx [(XNy+kyC)/C+qy/2]/Nφ

× |X,ky〉〈X,ky + qy |. (44)

Notice that the phase factor depends on the summation vari-
ables X,ky only through the linear combination XNy + kyC,
which is proportional to the center position of the hybrid
Wannier orbital |X,ky〉 [Eq. (16)],

〈X,ky |x̂|X,ky〉 = Lx

XNy + kyC

NxNy

mod Lx, (45)

where x̂ is the position operator in the x direction. This
motivates us to index these orbitals by their center position.
In the following, we introduce an alternative labeling |j,s〉 for
the Wannier states. The j index gives the center position of
the Wannier state while the s index plays a role similar (but
not identical) to the color index σ . As we will see in the next
section, the projected interaction decays exponentially when
the difference in the j indices between two particles increases.

As seen from Eq. (16), the hybrid Wannier state |X,ky〉
depends on (X,ky) only through

XNy + kyC (46)

and

X mod C, (47)

in the exponential and the Kronecker δ in Eq. (16), respectively.
For integers X,ky , the linear combination XNy + kyC must be
an integer multiple of the greatest common divisor (GCD)

C̃ ≡ GCD(C,Ny). (48)
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Therefore we introduce two integer labels

j = (XNy + kyC)/C̃, s = X mod C. (49)

For future convenience, we also define integers

M = NxNy/C̃, d = C/C̃. (50)

We emphasize that j and s are not independent. This can be
seen by examining the solutions to the first equation in Eq. (49).
For a given j , if (X,ky) is a solution, then all the solutions
can be parametrized as (X + nC/C̃,ky − nNy/C̃), n ∈ Z.
Therefore s = X mod C can take C̃ different values in [0..C)
with uniform spacing d = C/C̃ [Eq. (50)], corresponding to
n = 1, . . . ,C̃ in X + nC/C̃. For a given j , we denote this set
of C̃ allowed values of s by

Sj ⊂ [0..C). (51)

A useful property is

Sj = Sj+d , (52)

which follows from the fact that j → j + d can be achieved
by ky → ky + 1 without touching X. Plugging Eq. (49) into
Eq. (16), we find that indeed we can relabel the hybrid Wannier
states

|X,ky〉 ↔ |j,s〉, (53)

modulo the identification

|j,s〉 = |j,s + C〉. (54)

An example is given in Fig. 1. It is not hard to see that this
mapping is bijective, although we cannot easily write down an

ky

x̂ mod Lx

0 1 2 3 4 5

3,1

5,1

7,1

9,1

11,1

13,1

X
=

1

6,2

8,2

10,2

12,2

14,2

X
=

2

9,3

11,3

13,3

X
=

3

12,0

14,0

X
=

4

1,1

X
=

2

0,2

2,2

4,2

X
=

3

1,3

3,3

5,3

7,3

X
=

4

0,0

2,0

4,0

6,0

8,0

10,0

X
=

0

FIG. 1. (Color online) Relabeling of the Wannier states
|X,ky〉 ↔ |j,s〉 for (Nx,Ny) = (5,6) and C = 4. We focus on the
principal region with X ∈ [0..Nx) and ky ∈ [0..Ny). Each solid
ellipse represents a Wannier center. The horizontal axis gives the ky

index while the vertical axis gives the position of the Wannier center
in the x direction (mod Lx). The ellipses are colored according to the
X index, and labeled by the (j,s) indices. We have employed Eq. (58)
to shift j to [0..M) and s to [0..C). Upon a color-independent flux
insertion, each Wannier center flows along the solid lines of its color.

explicit formula for the solution (X,ky) to Eq. (49) at a given
(j,s). We denote the ky solution formally as

ky(j,s). (55)

Then, the representation of the color-entangled magnetic
translations T̃α in the |j,s〉 basis can be constructed indirectly
from Eq. (18),

T̃x |j,s〉 = |j + Ny/C̃,s + 1〉,
T̃y |j,s〉 = e−i2πky (j,s)/Ny |j,s〉.

(56)

The wave functions for |j,s〉 can be obtained from Eq. (16),

〈x,y,σ |j,s〉 = 1

(
√

πLylB)1/2

Z∑
m

δmod C
σ,s+mNx

× exp

{
i2π

(
j

d
+ mNφ

)
y

Ly

− 1

2

[
x

lB
− 2πlB

Ly

(
j

d
+ mNφ

)]2}
. (57)

In parallel to Eq. (17), |j,s〉 is periodic in s but quasiperiodic
in j ,

|j + M,s + Nx〉 = |j,s〉, |j,s + C〉 = |j,s〉. (58)

As we will see soon, this twist in s when shifting j is the
main issue that sets the current problem apart from the usual
multicomponent FQH [84].

We now want to expand the projected density operator in
the relabeled hybrid Wannier basis. On the one hand, notice
that due to the quasiperiodicity of |X,ky〉 [Eq. (17)], the double
sum of (X,ky) over [0..Nx) × [0..Ny) in Eq. (44) can be shifted
to any set of NxNy points in the Z2 plane, as long as the
corresponding hybrid states are independent from each other.
On the other hand, notice that

{|j,s〉| j ∈ [j0..j0 + M),s ∈ Sj } (59)

label a set of NxNy hybrid Wannier states that are independent
from each other for any given j0 ∈ Z. Therefore we can rewrite
the double sum in Eq. (44) as a sum over the above set. Since
increasing ky by qy while keeping X constant sends (j,s) to
(j + qyd,s), we have

ρq = e−q2l2
B/4

M∑
j

′e−i2πqx (j+ qy d

2 )/M
Sj∑
s

|j,s〉〈j + qyd,s|,

(60)
where the primed sum is over j ∈ [j0..j0 + M) for an arbitrary
j0 ∈ Z, with M = NxNy/C̃ [Eq. (50)]. The appearance of
〈j + qyd,s| requires special attention: when we shift j + qyd

back to [j0..j0 + M) using Eq. (58), the s index must be
changed accordingly, by Nx (mod C). This boundary effect
dictates that ρq is not diagonal in s unless Nx is divisible by
C, which discourages a seemingly plausible interpretation of
s as an effective spin index in general.

B. Interacting Hamiltonian

We consider only interactions between a pair of color-
neutral densities ρq. The relevance of such interactions to
the Chern insulators was justified numerically in our previous
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paper [63]. Such interactions can be specified in terms of the
Haldane pseudopotentials. Higher-body pseudopotentials [83]
can be implemented in the same spirit. We consider only the
first two pseudopotentials (V0,V1) being non-negative, with all
Vm>1 = 0. The interaction strength at momentum transfer q
then reads

Vq = 4πl2
B

[
V0 + V1 · (

1 − q2l2
B

)]
, (61)

and the Hamiltonian is given by

H = 1

2LxLy

∑
q

Vqρqρ−q. (62)

Here, q is summed over the infinite reciprocal lattice.
As shown in our previous paper [63], the color-entangled

generalizations of the bosonic/fermionic Halperin singlet
states and the corresponding quasihole states are defined
as the exact zero modes of the above Hamiltonian (using
V1 = 0 for the bosonic case). These states are distinct from
the usual Halperin states due to the color-entangled boundary
conditions inherent in ρq. Through numerical diagonalization,
we can obtain these zero modes, and then transcribe them to
the lattice system of an arbitrary Chern insulator using the
one-body mapping between the LLL Bloch states and the
lattice Bloch states. We now attempt to achieve an analytic
understanding of this Hamiltonian, by exploiting its assumed
adiabatic connectivity [63] to the thin-torus limit.

We first plug Eq. (60) into Eq. (62) and write H in the
relabeled hybrid Wannier basis,

H = 1

2LxLy

∑
q

e−q2l2
B/2Vq

M∑
j1

′
M∑
j2

′e−i2πqx (j1−j2+qyd)/M

×
Sj1∑
s1

Sj2∑
s2

ψ
†
j1,s1

ψ
†
j2,s2

ψj2−qyd,s2ψj1+qyd,s1 , (63)

where M and d are defined in Eq. (50), and for q =
(2πqx/Lx,2πqy/Ly), we have

q2l2
B = 2π

Nφ

(
Ly

Lx

q2
x + Lx

Ly

q2
y

)
. (64)

We want to massage the above expansion of H to a
form amenable to justified truncation in the thin-torus
limit. The main obstacle is obviously the oscillatory factor
e−i2πqx (j1−j2+qyd)/M in the coefficient. This can be removed
in exchange for a Gaussian factor by performing a Poisson
resummation over qx , which does not appear in the index of
the creation/annihilation operators. After some straightforward
but tedious algebra in Appendix C, we find

H =
√

Lx

NφLy

Z∑
qy

e−β(qyd)2
M∑
j

′ ∑



Z∑
n

e−β(
−qyd+nM)2

×{V0 + 2βV1[(
 − qyd + nM)2 − (qyd)2]}

×
Sj∑
s

Sj+
∑
s ′

ψ
†
j,sψ

†
j+
,s ′ψj+
−qyd,s ′ψj+qyd,s , (65)

where 
 is summed over an interval of length M centered
around qyd,


 ∈ [
qyd − �M/2�..qyd − �M/2� + M

)
, (66)

and we have defined the shorthand

β = 1

d2

π

Nφ

Lx

Ly

. (67)

IV. THIN-TORUS ANALYSIS

In Eq. (65), the Hamiltonian has been organized into groups
of density-density or pair hopping terms. The strengths of the
terms decay exponentially in the limit

β � 1. (68)

This is exactly the thin-torus limit in Eq. (43). In the following,
we perform a proper truncation of the Hamiltonian in this limit
and analyze the degeneracy and quantum numbers of its zero
modes.

The thin-torus analysis is a well-known, powerful technique
to tackle the strongly-correlated physics in single-component
FQH effect [65,67,69,77]. In the thin-torus limit, the pair
hopping terms die off quickly, and the Hamiltonian becomes
classical, dominated by density-density terms and thus solv-
able. (This is not true for certain nonunitary states [86].)
One can obtain the correct degeneracy of the ground states
and extract their total momenta simply by minimizing the
classical electrostatic energy and completely ignoring the pair
hoppings. By assumed adiabatic connectivity, [63] the results
must also apply to the isotropic limit. The thin-torus analysis
thus provides an intuitive picture for the “root partitions” and
the underlying generalized Pauli principle of Refs. [79,80].
Our multicomponent pseudopotential Hamiltonian with color-
entangled boundaries (65) turns out to be considerably more
complicated due to the essential role played by the pair
hopping terms. As we will see soon, the largest pair hopping
terms have strengths comparable to the subleading density-
density terms. Keeping only the leading density-density terms
results in too many zero modes compared with the numerical
studies [56,57,63]. The correct ground-state degeneracy is
recovered only after we put back the largest pair hoppings,
which turn out to be of similar strength as some of the
density-density terms. This indicates that the thin-torus limit
of our multicomponent pseudopotential Hamiltonian cannot be
described by classical electrostatics alone. The useful result of
this section is a set of rules [Sec. IV D] that correctly predict
the degeneracy and total lattice momenta of FCI ground states
(including quasiholes). This is illustrated by explicit examples
in Secs. IV E and IV F.

A. Truncation of bosonic Hamiltonian

Numerical studies in Refs. [56,57] found gapped FCI
phases of bosons at filling ν = 1/(C + 1) with (C + 1)-fold
degenerate ground states, stabilized by on-site interactions
projected to a topological flat band with Chern number C.
In the following, we specialize to the simplest case of bosons
and try to understand the ground states of the pseudopotential
Hamiltonian at filling ν = 1/(C + 1) and with quasiholes.
Setting V0 = √

NφLy/Lx > 0 and V1 = 0, the Hamiltonian
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in Eq. (65) becomes

H =
Z∑
qy

M∑
j

′ ∑



Z∑
n

e−β(qyd)2−β(
−qyd+nM)2

×
Sj∑
s

Sj+
∑
s ′

ψ
†
j,sψ

†
j+
,s ′ψj+
−qyd,s ′ψj+qyd,s , (69)

where the primed sum of j is over

j ∈ [j0..j0 + M) (70)

for an arbitrary j0 ∈ Z [Eq. (59)], while 
 is summed over the
interval of length M given in Eq. (66).

In the β � 1 limit, we can safely truncate the sum over n

to a single term at n = 0, if we assume that M/d = Nφ �
1. Further, only the terms with qy ∼ 0 and 
 − qyd ∼ 0
have a significant contribution, since the coefficients decay
exponentially with respect to the (squared) Euclidean distance
from qyd = 
 − qyd = 0,

R2(qy,
) ≡ (qyd)2 + (
 − qyd)2, (71)

as illustrated in Fig. 2. The 4-boson ψ†ψ†ψψ operator can
be either density-density interaction or pair hopping. We find
that the terms with qy = 0 are all density-density interactions,
while the strongest pair hopping terms may appear at |qy | = 1,

 = qyd, with Euclidean distance R2 = d2.

In light of the previous studies [65,67,69,77], we first
examine the effect of the terms with R2(qy,
) < d2. They
can be collected into

H<d2 =
M∑
j

(−d..d)∑



e−β
2
njnj+
, (72)

Δ − qyd

qyd

0 1 d−d

d

−d

FIG. 2. Terms in the expansion of the pseudopotential Hamilto-
nian. Here we illustrate the example of d = 3. Each dot represents a
term (qy,
) in Eq. (69). The weight of each term decays exponentially
in its distance from the origin. The dashed circle marks the empirical
threshold for truncation (qyd)2 + (
 − qyd)2 = d2. The solid black
dots inside are the density-density terms in Eq. (72), while the four
solid gray dots contain the pair hopping and the density-density terms
in Eqs. (75) and (85).

where the number operator nj is defined by

nj =
Sj∑
s

ψ
†
j,sψj,s . (73)

Recall from Eq. (51) that Sj is the set of all allowed values
of s for ψj,s at a given j , and this set contains C̃ different
values. Also, recall from Eq. (50) that d C̃ = C. By solving
the simple electrostatics, we find that the zero modes of H<d2

with highest density appear at filling ν = 1/C. This leads
to much more than (C + 1) zero modes at filling 1/(C + 1),
inconsistent with the findings from numerical diagonalization
of actual FCI Hamiltonians [56,57]. This is a clear signal that
we should include more terms in the truncated Hamiltonian.

In the following, we analyze the effect of the next strongest
terms in Eq. (69), with Euclidean distance R2(qy,
) = d2.
They are located at (|
 − qyd|,|qyd|) = (0,d) and (d,0),
represented by the four solid gray dots in Fig. 2. In the next
section, we provide detailed analysis of the simplest case with
d = 1. The results for general d will be presented afterwards.

B. Effect of nondensity terms: d = 1

In this section, we specialize to the simplest case d = 1,
illustrated in Fig. 3. In this case, Ny is divisible by C [Eqs. (48)
and (50)]. The pseudopotential Hamiltonian in Eq. (69) (after
truncating the sum over n) becomes

H =
Z∑
qy

M∑
j

′ ∑



e−βq2
y −β(
−qy )2

×
Sj∑
s

Sj+
∑
s ′

ψ
†
j,sψ

†
j+
,s ′ψj+
−qy ,s ′ψj+qy ,s . (74)

We now extract the terms at q2
y + (
 − qy)2 = d2 = 1,

namely, at (qy,
) = (1,1),(0,1),(−1, − 1),(0, − 1). To col-
lect together the terms nicely, recall from Eq. (52) that
Sj = Sj+1 at d = 1, and note that we can take advantage of
the freedom in Eq. (70) to shift the range of the primed sum
over j . We then find

M∑
j

e−β

Sj∑
s

Sj∑
s ′

[(1,1) + (0,1) + (−1, − 1) + (0, − 1)].

(75)

Δ − qy

qy

0 1−1

1

−1

FIG. 3. Terms in the expansion of the pseudopotential Hamilto-
nian at d = 1. The presentation follows the same format as Fig. 2.
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The four terms in the above brackets are labeled by (qy,
),
and explicitly they are given by

ψ
†
j,sψ

†
j+1,s ′ψj,s ′ψj+1,s + ψ

†
j,sψ

†
j+1,s ′ψj+1,s ′ψj,s

+ψ
†
j+1,sψ

†
j,s ′ψj+1,s ′ψj,s + ψ

†
j+1,sψ

†
j,s ′ψj,s ′ψj+1,s . (76)

The second and the fourth terms above are density-density
interactions, while the first and the third exchange the s indices
of a pair of particles. We will refer to the latter terms as
“s-exchange” terms. Notice that we can combine the above
four terms into a single product,

b
†
j,s,s ′bj,s,s ′ , (77)

where the pair annihilation operator is given by

bj,s,s ′ = ψj,s ′ψj+1,s + ψj+1,s ′ψj,s . (78)

This combination is the key to the enumeration of zero modes
as we detail below. Together with the density-density terms in
Eq. (72), the bosonic pseudopotential Hamiltonian takes the
truncated form

H =
M∑
j

[
njnj + e−β

(
2njnj+1 +

Sj∑
s

Sj∑
s ′

b
†
j,s,s ′bj,s,s ′

)]

+
M∑
j

O(e−2β). (79)

The residual terms are exponentially small for β � 1.
When C̃ = 1, the s index can take only a single value

s = 0, reducing bj,s,s ′ to 2ψj,0ψj+1,0. This includes the case
of Chern number C = 1. The truncated Hamiltonian becomes
very simple:

H =
M∑
j

(njnj + 4e−βnjnj+1) +
M∑
j

O(e−2β ). (80)

Its zeros modes have no more than one boson in two
consecutive orbitals. We thus recover the familiar result [65,79]
for the bosonic Laughlin state at half-filling.

We now come back to the case with generic C. We look
for the constraints on the zero modes of the above truncated
Hamiltonian in Eq. (79). Due to the two-body nature of the
interaction, we only need to consider a pair of bosons at a
time, with j indices being j1,j2. In Eq. (79), each term in the
summation is positive-semidefinite by itself. This means that
to find the zero modes of Eq. (79), we only need to identify
the null space of each term individually, and then take their
intersection. From the density-density terms, we find that in a
zero mode we must have

|j1 − j2| � 1. (81)

This amounts to a minimal distance between adjacent bosons
along the j axis, with no discrimination of the s indices.
The s-exchange terms

∑
b†b in Eq. (79) kick in only when

the equality sign is taken in Eq. (81), as is evident from
Eq. (78). Specifically,

∑
b†b enforces in a zero mode the

antisymmetrization of the s indices between bosons with
|j1 − j2| = 1, (

ψ
†
j1,s1

ψ
†
j2,s2

− ψ
†
j1,s2

ψ
†
j2,s1

)|∅〉. (82)

We emphasize that the ψ†’s are bosonic operators. It is
easy to verify that the above antisymmetrized form is indeed
annihilated by

∑
b†b, whereas the symmetrized form acquires

a positive energy 2e−β . To find the zero modes for a system of
N bosons, we need to perform the above procedure on each
pair of bosons. This is explained in more details in Sec. IV D,
and illustrated by an example in Sec. IV F.

One last subtlety comes from the quasiperiodicity of the
j index [Eq. (58)]. The orbitals at j + M are identified with
those at j , but there is a possible mismatch between the s

indices,

|j + M,s〉 = |j,s − Nx〉. (83)

For the density terms, this does not make much trouble
since nj = nj+M after the summation of the s index over
Sj [Eq. (73)]; we just need to enforce the minimal distance
condition [Eq. (81)] across the quasiperiodic boundary j = 0
mod M . For the s-exchange terms

∑
b†b, however, we have

to be more careful about the s index mismatch. We have to
first shift their j indices (by integer multiples of M) such that
|j1 − j2| = 1 before we can apply the antisymmetrization in
Eq. (82). More explicitly, if |j1 − j2 + M| = 1 for example,
then the correct antisymmetrization can be either of the
following two equivalents:(

ψ
†
j1+M,s1

ψ
†
j2,s2

− ψ
†
j1+M,s2

ψ
†
j2,s1

) |∅〉
= (

ψ
†
j1,s1−Nx

ψ
†
j2,s2

− ψ
†
j1,s2−Nx

ψ
†
j2,s1

) |∅〉, (84)

but not Eq. (82) anymore. This is the only reason why we were
not able to consistently implement [63] the exclusion principle
for conventional multicomponent FQH model states [84,85]
for the color-entangled system.

C. Effect of Nodensity terms: general d

The analysis for general d is not much different from d =
1. Here we just state the essential results. The s-exchange
and density-density terms at (qyd)2 + (
 − qyd)2 = d2 can
be merged together,

M∑
j

e−βd2

Sj∑
s

Sj∑
s ′

b
†
j,s,s ′bj,s,s ′ , (85)

where the two-body annihilation operator is given by

bj,s,s ′ = ψj,s ′ψj+d,s + ψj+d,s ′ψj,s . (86)

Combined with the density-density terms in Eq. (72), the
leading terms in the bosonic pseudopotential Hamiltonian in
the limit of β � 1 are

H =
M∑
j

⎛⎝(−d..d)∑



e−β
2
njnj+
 + e−βd2

Sj∑
s

Sj∑
s ′

b
†
j,s,s ′bj,s,s ′

⎞⎠
+

M∑
j

O(e−β(d2+1)). (87)

The zero modes of the truncated Hamiltonian satisfy the
following pairwise constraints. First, for a pair of bosons with
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j indices being j1 and j2, we must have

|j1 − j2| � d. (88)

Here, the difference in j is understood with the quasiperiodic
identification j ∼ j + M . When the equality in Eq. (88) holds,
the two bosons are further subject to an antisymmetrization in
the s indices. For the simplest case |j1 − j2| = d, we need
Eq. (82), whereas for |j1 − j2 + M| = d, we need either of
the two equivalents in Eq. (84). When C̃ = 1, as s can take
only one value, this antisymmetrization consistently reduces
to an electrostatic repulsion at distance |j1 − j2| = d (and also
|j1 − j2 + M| = d).

D. Counting rule for degeneracy and momenta

Following the above constraints, we can enumerate all the
zero modes of the truncated Hamiltonian for a given system
size and a given number of particles, in the form

A
[
ψ

†
j1,s1

ψ
†
j2,s2

ψ
†
j3,s3

ψ
†
j4,s4

· · · ] |∅〉, (89)

where A antisymmetrizes the s indices as follows. As noted
earlier, for any pair of particles a and b in a zero mode, we
must have |ja − jb| � d, and when the equality holds, we need
to carry out antisymmetrization over the s indices (sa,sb).
Obviously, if we have j1 − j2 = d and j2 − j3 = d, then
we need to antisymmetrize over (s1,s2,s3). More generally,
if we have a cluster of m consecutive particles satisfying
ja − ja+1 = d, we need a full antisymmetrization over all the
s indices of these m particles.

The last remaining step is to group these zero modes
according by the total Bloch momentum and count the
degeneracy per momentum sector. The resulting degeneracy
is linked by the Bloch mapping [63] to the degeneracy of
FCI ground states per lattice momentum sector. This largely
follows the same procedure as detailed in Ref. [10]. We
represent by lowercase kα the Bloch momenta of individual
particles in the α = x,y direction and by uppercase

Kα =
∑

kα mod Nα (90)

the total Bloch momentum of the many-body system (the
summation is over particles). We denote by T̃ cm

α the center-of-
mass color-entangled magnetic translations, i.e., applying T̃α

simultaneously on all the particles. Then, the total Bloch
momentum Kα can be read off from the eigenvalue of T̃ cm

α ,

T̃ cm
α = e−i2πKα/Nα . (91)

The action of T̃ cm
α on the zero modes in Eq. (89) is spelled out

in Eq. (56).
There are four points to make here. First, the zero modes

in the form of Eq. (89) are automatically eigenstates of T̃ cm
y .

Evidently, each term in the antisymmetrization A individually
is an eigenstate of T̃ cm

y . Moreover, the eigenvalues have to be
the same for all those terms. This follows from the linearity
of Eq. (49): to find the total

∑
ky of all particles, we only

need to know the total
∑

j and
∑

s; the actual association
of between j and s does not matter. Second, under the action
of T̃ cm

x , the zero modes in Eq. (89) form closed orbits. This
follows from the fact that T̃ cm

x commutes with the (truncated)
pseudopotential Hamiltonian, and thus preserves its null space.

More directly, one can easily verify that the constraints on the
zero modes described in Secs. IV B and IV C are invariant
under the action of T̃ cm

x (namely X → X + 1, or |{j,s}〉 →
|{j + Ny/C̃,s + 1}〉), and that the action of T̃ cm

x always brings
one zero mode in the form of Eq. (89) to another zero mode
in the same form. Third, each action of T̃ cm

x along the orbit is
associated with a sign, since a term in the antisymmetrization
A in Eq. (89) may be brought to a term with the opposite
sign.8 Fourth, all the zero modes in an orbit under T̃ cm

x share
the same eigenvalue under T̃ cm

y . This is a direct consequence
of [T̃ cm

x ,T̃ cm
y ] = 0.

For each zero mode in the form of Eq. (89), we can directly
compute the total Ky momentum by just looking at a single
term in the antisymmetrization A. We can group together the
zero modes by the value of Ky = ∑

ky mod Ny . Then, within
each group, we successively apply T̃ cm

x on each zero mode
and further break them into disjoint orbits. Consider an orbit
consisting of n zero modes |0〉,|1〉, . . . ,|n − 1〉 of the form in
Eq. (89). They are linked together by

T̃ cm
x |r〉 = gr |r + 1 mod n〉, r ∈ [0..n), (92)

with gr = ±1 determined from the action of T̃ cm
x on the

antisymmetrization in Eq. (89). The n eigenstates of T̃ cm
x

are linear recombinations of these n states in the form
of Fourier sums. Without actually writing down the linear
recombinations, we can directly obtain the eigenvalues. By
successively applying the above equation, we find[

T̃ cm
x

]n |r〉 = g |r〉, (93)

with g = ∏n
r ′ gr ′ . This fixes the n eigenvalues of T̃ cm

x to be the
n distinct nth roots of g. If g = 1, the total Kx momenta of the
zero modes are

Kx = k
Nx

n
mod Nx, k ∈ [0..n), (94)

whereas if g = −1, they are

Kx = k
Nx

n
+ Nx

2
mod Nx, k ∈ [0..n). (95)

The numbers on the right-hand side of the above equation are
guaranteed to be integers: since [T̃ cm

x ]Nx is the identity operator
per the color-entangled boundary condition [Eq. (13)], we must
have Nx/n ∈ Z, and also gNx/n = 1.

Our end goal is an analytic algorithm to obtain the
degeneracy of the zero modes in each Bloch momentum sector.
This request is more modest than to find the actual expression
of the zero modes in each sector, and the above procedure can
be further simplified. For example, we do not need to actually
write down the zero modes as in Eq. (89). We only need to keep
track of the structure of clusters of consecutive particles with
ja − ja+1 = d, as noted below Eq. (89), and the set of s indices
in each cluster. An open-source reference implementation can
be found at http://fractionalized.github.io. We have tested our
algorithm extensively against the total Bloch momenta of the
actual ground states obtained from numerical diagonalization

8For the case of fermions, there also is a statistical sign, as noted in
Ref. [10].
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FIG. 4. (Color online) Energy spectrum of the pseudopotential
Hamiltonian of two bosons on a Nx × Ny = 3 × 2 lattice with Chern
number C = 2. The three degenerate ground states at zero energy are
marked in red.

for various system sizes, and found perfect agreement across
all cases.

E. A simple example

To see the above counting rule in action, we consider a
simple example, two bosons on a Nx × Ny = 3 × 2 lattice
with Chern number C = 2. From numerical diagonalization of
the pseudopotential Hamiltonian (see Fig. 4), we find threefold
degenerate ground states with total Bloch momenta

(Kx,Ky) = (0,0),(1,0),(2,0) mod (3,2). (96)

We note that the spinless counting rule [10] gives the wrong
result Ky = 1 mod 2 when naively applied to this system.
We now show how our new procedure produces the correct
momenta.

From (Nx,Ny) = (3,2) and C = 2, we compute C̃ =
GCD(C,Ny) = 2, d = C/C̃ = 1, M = NxNy/C̃ = 3. Equa-
tion (49) reduces to

j = X + ky, s = X mod 2. (97)

We denote s = 0 by ↓ and s = 1 by ↑. To facilitate two-way
lookup of the mapping (X,ky) ↔ (j,s), we can make a table

X ky j s

0 0 0 ↓
0 1 1 ↓
1 0 1 ↑
1 1 2 ↑
2 0 2 ↓
2 1 0 ↑

(98)

The last line in the above table deserves special attention. From
Eq. (97), for (X,ky) = (2,1) we obtain (j,s) = (3,↓). However,
due to the quasiperiodicity condition in j , [Eq. (58)], this is
equivalent to (j,s) = (0,↑).

We enumerate all the two-boson zero modes of the truncated
pseudopotential Hamiltonian [Eq. (87)] in the form of Eq. (89).
Applying the constraint |j1 − j2| � 1 across the quasiperiodic
boundary of j , we find only three possibilities:

(j1,j2) = (0,1),(1,2),(0,2). (99)

All of them satisfy either |j1 − j2| = d (first two) or |j1 − j2 +
M| = d (last one), and are thus subject to full antisymmetriza-
tion of the s indices (s1,s2). Since there are only two allowed
values of s, we can already see that there are only three zero
modes in the form of Eq. (89). We now go through them one
by one. First, consider (j1,j2) = (0,1). Using Eq. (82), we find
that the only possible (s1,s2) antisymmetrization is

|0,1〉〉 ≡ (ψ†
0,↓ψ

†
1,↑ − ψ

†
0,↑ψ

†
1,↓) |∅〉. (100)

Here, the double bracket | · ,·〉〉 distinguishes the many-body
zero mode from the one-body basis state |j,s〉, and the
subscript of the creation operator ψ† denotes (j,s). Similarly,
for (j1,j2) = (1,2), we find

|1,2〉〉 ≡ (ψ†
1,↓ψ

†
2,↑ − ψ

†
1,↑ψ

†
2,↓) |∅〉. (101)

The case of (j1,j2) = (0,2) satisfies |j1 − j2 + M| = d rather
than |j1 − j2| = d. So we use Eq. (84) rather than Eq. (82),
and find

|0,2〉〉 ≡ (ψ†
3,↓ψ

†
2,↑ − ψ

†
3,↑ψ

†
2,↓) |∅〉

= (ψ†
0,↑ψ

†
2,↑ − ψ

†
0,↓ψ

†
2,↓) |∅〉. (102)

Notice that after we bring the j indices back to [0..M)
using Eq. (83), the s indices on the second line are not in
an explicit antisymmetrized form. This manifests the core
difference of our problem from the usual FQH: when the lattice
size is incommensurate with the Chern number, we cannot
consistently distinguish the C families of Wannier states, since
the flow of Wannier centers are entangled on the quasiperioidic
boundary.

Using the lookup table in Eq. (98), we find that the total
Ky momenta of the three zero modes are all equal to 0 mod
2, consistent with Eq. (96). To compute the Kx momentum,
we need to find out the action of the center-of-mass translation
T̃ cm

x on these states. For our example, Eq. (56) reduces to

T̃x |j,s〉 = |j + 1,s + 1〉. (103)

We thus find the representation of T̃ cm
x on the zero modes:

T̃ cm
x |0,1〉〉 = (ψ†

1,↑ψ
†
2,↓ − ψ

†
1,↓ψ

†
2,↑)|∅〉 = −|1,2〉〉,

T̃ cm
x |1,2〉〉 = (ψ†

2,↑ψ
†
3,↓ − ψ

†
2,↓ψ

†
3,↑)|∅〉 = |0,2〉〉,

T̃ cm
x |0,2〉〉 = (ψ†

1,↓ψ
†
3,↓ − ψ

†
1,↑ψ

†
3,↑)|∅〉

= (ψ†
1,↓ψ

†
0,↑ − ψ

†
1,↑ψ

†
0,↓)|∅〉 = −|0,1〉〉. (104)

Notice that we can evaluate T̃ cm
x |0,2〉〉 using either line in

Eq. (102); the results are guaranteed to be the same by the
consistency between Eqs. (56) and (58).

The three zero modes thus form a single orbit under the
successive action of T̃ cm

x . They can be recombined to form
eigenstates of T̃ cm

x . To find the total Kx momenta of the
recombined states, we can either follow the procedure detailed
in the last section, or we can brute-force diagonalize T̃ cm

x . The
representation matrix of T̃ cm

x over the three zero modes reads⎛⎜⎝ 0 −1 0

0 0 1

−1 0 0

⎞⎟⎠ . (105)
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FIG. 5. (Color online) Energy spectrum of the pseudopotential
Hamiltonian of three bosons on a Nx × Ny = 5 × 2 lattice with Chern
number C = 2. The ten degenerate ground states at zero energy are
marked in red.

From its eigenvalues {1,ei2π/3,e−i2π/3}, we find the total Kx

momenta of the three recombined zero modes to be 0,1,2 mod
3. In summary, we reproduce the correct total Bloch momenta
in Eq. (96).

F. An example with quasiholes

Next, we consider a slightly more complicated example
with quasiholes. For a system of three bosons with C = 2,
the densest zero modes of our pseudopotential Hamiltonian
occur at filling ν = 1/(C + 1) = 1/3, i.e., three bosons in
9/2 fluxes. The fractional flux is possible thanks to the
color-entangled boundary conditions in Eq. (13). We now add
1
2 flux to each color component and consider Nx × Ny = 5 × 2
and Nφ = 9/2 + 1/2 = NxNy/C = 5. This leads to a set of
tenfold degenerate quasihole states at zero energy, with one
mode in each momentum sector (Kx,Ky) ∈ [0..Nx) × [0..Ny).
This can be seen in the numerical diagonalization results in
Fig. 5.

We now show how to obtain this counting using our algo-
rithm. The basic procedure is the same as the previous example.
We first compute C̃ = GCD(C,Ny) = 2, d = C/C̃ = 1, and
M = NxNy/C̃ = 5. Equation (49) again reduces to Eq. (97),
and we have two allowed values of s (0 and 1), denoted by ↓
and ↑. Then we can build the (X,ky) ↔ (j,s) lookup table,

X ky j s

0 0 0 ↓
0 1 1 ↓
1 0 1 ↑
1 1 2 ↑
2 0 2 ↓
2 1 3 ↓
3 0 3 ↑
3 1 4 ↑
4 0 4 ↓
4 1 0 ↑

(106)

Again, the last line in the table has a flipped s index due to the
quasiperiodic boundary condition in j [Eq. (58)].

Compared with the previous example, the enumeration
of the zero modes in the form of Eq. (89) has an extra

complication. Let us first apply the |ja − jb| � 1 rule between
each pair of bosons. We find two groups of allowed (j1,j2,j3)
configurations,

(0,1,2),(1,2,3),(2,3,4),(3,4,0),(4,0,1), (107)

and

(0,1,3),(1,2,4),(2,3,0),(3,4,1),(4,0,2). (108)

Here, we have underlined each cluster of bosons linked to-
gether by |ja − jb| = d = 1 or |ja − jb + M| = d = 1. Then,
we need to antisymmetrize the s indices of the bosons in the
same cluster. This kills the five configurations in the first group
[Eq. (107)]: the three bosons in the same cluster must take
different values of s under antisymmetrization, but there are
only two possible values of s (↑ and ↓). We are left with the five
j configurations in Eq. (108). In each configuration, the two
clustered bosons have antisymmetrized s indices ↑↓ − ↓↑,
while the third boson can take either ↑ or ↓. For example, for
(j1,j2,j3) = (0,1,3), we have a pair of zero modes:

(ψ†
0,↓ψ

†
1,↑ − ψ

†
0,↑ψ

†
1,↓)ψ†

3,↑ |∅〉,
(ψ†

0,↓ψ
†
1,↑ − ψ

†
0,↑ψ

†
1,↓)ψ†

3,↓ |∅〉.
(109)

We can similarly write down the other eight zero modes. This
gives the correct tenfold degeneracy. Using the lookup table
in Eq. (106), we can compute the Ky lattice momentum for
each zero mode and construct the representation matrix of
the color-entangled center-of-mass translation operator T̃ cm

x

in exactly the same manner as in the previous example. This
reproduces the correct degeneracy in each momentum sector.
We leave details of this last step for the interested readers.

V. CONCLUSION

In this paper, we have studied the pseudopotential model
Hamiltonian for FCI with an arbitrary Chern number. We
establish a one-body mapping between a Chern band with
Chern number C, and a C-component LLL with specially en-
gineered boundary conditions. The new boundary conditions
lead to an alternative set of pseudopotential Hamiltonians,
and the corresponding zero modes define new model wave
functions. By taking the thin-torus limit and keeping only
the leading density-density and pair hopping terms, we are
able to analytically solve the pseudopotential Hamiltonian
and obtain its zero modes. By analyzing the representation
of the center-of-mass translation operators, we derive an
algorithm to directly compute the total Bloch momenta of the
degenerate zero modes. As we showed in our last paper [63],
our pseudopotential Hamiltonian is adiabatically connected
to the lattice FCI Hamiltonian, and the its zero modes serve
as good trial wave functions for the FCI ground states. In
particular, there is a 1-to-1 correspondence between the trial
wave function and the FCI ground state in each momentum
sector. Therefore our counting algorithm can be used to obtain
the total lattice momenta of the FCI ground states (including
quasiholes) without diagonalizing the FCI Hamiltonian, for
Abelian FCI states at filling ν = 1/(C + 1).
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APPENDIX A: HYBRID WANNIER STATES UNDER
COLOR-ENTANGLED MAGNETIC TRANSLATIONS

In this appendix, we prove Eq. (18), the representation of
T̃x and T̃y in the hybrid Wannier basis |X,ky〉. In Landau gauge
A = Bxŷ, the magnetic translation operators Tx and Ty defined
in Eq. (8) have the real-space representation

Tx = e
i2π

Nφ

Nx

y

Ly e− Lx
Nx

∂x , Ty = e
− Ly

Ny
∂y . (A1)

Acting on a trial state |ψ〉, they transform the real-space wave
function 〈x,y|ψ〉 by

〈x,y|Tx |ψ〉 = e
i2π

Nφ

Nx

y

Ly 〈x − Lx/Nx,y|ψ〉,
〈x,y|Ty |ψ〉 = 〈x,y − Ly/Ny |ψ〉.

(A2)

Plugging these into the Landau-gauge definition of |X,ky〉 in
Eq. (16) and using Eq. (2), we find

〈x,y,σ |Tx |X,ky〉 = 〈x,y,σ + 1|X + 1,ky〉,
(A3)〈x,y,σ |Ty |X,ky〉 = e−i2π(ky/Ny+σ/C)〈x,y,σ |X,ky〉.

Since the clock-and-shift operators Q,P defined in Eq. (10)
are unitary, we have

〈σ |P = 〈σ − 1|, 〈σ |Q = ei2πσ/C〈σ |. (A4)

Putting Eqs. (A3) and (A4) together, we find the action of
T̃x = TxP and T̃y = TyQ to be particularly simple,

〈x,y,σ |T̃x |X,ky〉 = 〈x,y,σ |X + 1,ky〉,
〈x,y,σ |T̃y |X,ky〉 = e−i2πky/Ny 〈x,y,σ |X,ky〉.

(A5)

This proves Eq. (18).

APPENDIX B: PROJECTED DENSITY
IN BLOCH BASIS

In this appendix, we prove Eq. (27), the expansion of the
projected density operator in the Bloch basis, proof which, due
to lack of space, was not included in Ref. [63]. We first derive a
simpler form for the Bloch wave function φk(r,σ ) = 〈r,σ |k〉.
When we plug Eq. (16) into Eq. (19), we have a double sum
over X,m. However, notice that (X,m) in the double sum
can always be combined into X + mNx , thanks to XNy/C +
mNφ = (X + mNx)Ny/C and ei2πXkx/Nx = ei2π(X+mNx )kx/Nx

(recall that Nφ = NxNy/C). This enables us to merge the
double sum into a single sum of X + mNx over Z. The
Kronecker δ enforcing σ = X + mNx mod C suggests we
split X + mNx → nC + σ with n summed over Z. This leads
to the final form of the Bloch wave function,

〈x,y,σ |k〉 = 1

(
√

πNxLylB)1/2

Z∑
n

ei2π(nC+σ )kx/Nx

× exp

{
i2π

(
ky + nNy + σ

C
Ny

)
y

Ly

− 1

2

[
x

lB
− 2πlB

Ly

(
ky + nNy + σ

C
Ny

)]2}
. (B1)

This wave function indeed depends only on σ mod C (by a reshift in the dummy variable n), and it has the quasiperiodicity in
ky as in Eq. (20). We now plug this into ρq,σ defined in Eq. (25):

ρq,σ = 1√
πNxLylB

BZ∑
k1

BZ∑
k2

|k1〉〈k2|
Z∑
n1

Z∑
n2

e−i2π(n1C+σ )k1x/Nx ei2π(n2C+σ )k2x/Nx

×
( ∫ Lx

0
dx e−i2πqxx/Lx exp

{
− 1

2

[
x

lB
− 2πlB

Ly

(
k1y + σ

C
Ny + n1Ny

)]2

− 1

2

[
x

lB
− 2πlB

Ly

(
k2y + σ

C
Ny + n2Ny

)]2})
×

[ ∫ Ly

0
dy e−i2πqyy/Ly−i2π(k1y+n1Ny−k2y−n2Ny )y/Ly

]
. (B2)

We first finish the
∫

dy integral on the last line,∫
dy e−i2π ··· = Ly δk2y+n2Ny, k1y+n1Ny+qy

. (B3)

Notice that the summations of k1 and k2 over BZ in the above equation are independent. To accommodate the Kronecker δ in the
above equation, we set the summation of k1y over [0..Ny), and the summation of k2y over [qy..Ny + qy). Then, the Kronecker δ

above can be decomposed into two separate Kronecker δ’s, enforcing

k2y = k1y + qy, n1 = n2. (B4)
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And we have

ρq,σ = 1√
πNxlB

Nx∑
k1x

Nx∑
k2x

Ny∑
ky

|k1x,ky〉〈k2x,ky + qy |
Z∑
n

ei2π(nC+σ )(k2x−k1x )/Nx

×
( ∫ Lx

0
dx e−i2πqxx/Lx exp

{
− 1

2

[
x

lB
− 2πlB

Ly

(
ky + σ

C
Ny + nNy

)]2

− 1

2

[
x

lB
− 2πlB

Ly

(
ky + qy + σ

C
Ny + nNy

)]2})
. (B5)

It is easy to check that ρq,σ is indeed invariant under a shift of the dummy variable ky → ky + Ny . We now tackle the
∫

dx

integral in the bracket. We can collect terms and complete the square in the exponential. After some trivial but tedious algebra,
the integrand becomes

e−q2l2
B/4 e−i2πqx (ky+qy/2+σNy/C+nNy )/Nφ exp

(
−

{
x

lB
− 2πlB

Ly

[
ky + σ

C
Ny + nNy + 1

2

(
qy − i

Ly

Lx

qx

)]}2)
. (B6)

Here, we have used 2πl2
BNφ = LxLy [Eq. (2)], and

q2l2
B = 2π

Nφ

(
Ly

Lx

q2
x + Lx

Ly

q2
y

)
. (B7)

The projected density can thus be written as

ρq,σ = 1√
πNxlB

e−q2l2
B/4

Nx∑
k1x

Nx∑
k2x

Ny∑
ky

|k1x,ky〉〈k2x,ky + qy | e−i2πqx (ky+qy/2)/Nφ

Z∑
n

ei2π(nC+σ )(k2x−k1x−qx )/Nx

×
∫ Lx

0
dx exp

(
−

{
x

lB
− 2πlB

Ly

[
ky + σ

C
Ny + nNy + 1

2

(
qy − i

Ly

Lx

qx

)]}2)
. (B8)

Notice that

x

lB
− 2πlB

Ly

nNy = x − nNyLx/Nφ

lB
; (B9)

we can shift the integration interval to ∫ Lx+n
Ny

Nφ
Lx

n
Ny

Nφ
Lx

dx. (B10)

This moves the dependence on n from the integrand to the integration limits [and also the exponential prefactor
ei2π(nC+σ )(k2x−k1x−qx )/Nx ].

We want to sew together the integrals for all n so that we can finish the Gaussian integral, but the integration intervals for
different n are overlapping and cannot be joined head to tail in general, unless Nx is divisible by C. However, recall that (to have
symmetries P,Q) we restrict the interacting Hamiltonian to be color-neutral, so we are interested only in ρq = ∑C

σ ρq,σ . The
color sum saves us. Notice that the dependence on (σ,n) is all through the combination nC + σ . We can merge the two sums
over σ and n into a single sum over integers, nC + σ → m:

ρq = 1√
πNxlB

e−q2l2
B/4

Nx∑
k1x

Nx∑
k2x

Ny∑
ky

|k1x,ky〉〈k2x,ky + qy | e−i2πqx (ky+qy/2)/Nφ

Z∑
n

ei2πn(k2x−k1x−qx )/Nx

×
∫ Lx

0
dx exp

(
−

{
x

lB
− 2πlB

Ly

[
ky + n

C
Ny + 1

2

(
qy − i

Ly

Lx

qx

)]}2)
. (B11)

Notice that

Z∑
n

· · ·
∫ Lx

0
dx · · · =

Z∑
n

ei2πn(k2x−k1x−qx )/Nx

∫ (1+n/Nx )Lx

(n/Nx )Lx

dx exp

(
−

{
x

lB
− 2πlB

Ly

[
ky + 1

2

(
qy − i

Ly

Lx

qx

)]}2)
. (B12)
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Each interval [ m
Nx

Lx,
m+1
Nx

Lx) is covered by the integral for Nx times, and during the Nx times, the exponential prefactor runs

through all the Nx values of ei2πt(k2x−k1x−qx ) for t ∈ [0..Nx). In formula, we have

Z∑
n

· · ·
∫

dx · · · =
Nx∑
n

ei2πn(k2x−k1x−qx )/Nx

∫ ∞

−∞
dx exp

(
−

{
x

lB
− 2πlB

Ly

[
ky + 1

2

(
qy − i

Ly

Lx

qx

)]}2)
(B13)

= √
πNxlB δ

mod Nx

k2x , k1x+qx
. (B14)

The “mod Nx” does not lead to any problem, since |k〉 is
periodic in kx . Finally, we arrive at Eq. (27):

ρq = e−q2l2
B/4

BZ∑
k

e−i2πqx (ky+qy/2)/Nφ |k〉〈k + q|.

APPENDIX C: PSEUDOPOTENTIAL HAMILTONIAN
REORGANIZED

In this appendix, we prove Eq. (65), the reorganized
expression for the pseudopotential Hamiltonian in Eq. (63)
suitable for truncation. Starting from Eq. (63), we first isolate
the qx dependence,

H =
Z∑
qy

e
− π

Nφ

Lx
Ly

q2
y

M∑
j1

′
M∑
j2

′GV (j1 − j2,qy)

×
Sj1∑
s1

Sj2∑
s2

ψ
†
j1,s1

ψ
†
j2,s2

ψj2−qyd,s2ψj1+qyd,s1 , (C1)

where GV (j1 − j2,qy) is defined by

GV (k,qy)=
Z∑
qx

Vq

2LxLy

exp

(
− π

Nφ

Ly

Lx

q2
x − i2πqx

k + qyd

M

)
.

(C2)

Through a Poisson resummation, we can easily prove the
general formula

Z∑
qx

e−πAq2
x −i2πqxξ = 1√

A

Z∑
n

e−π(n−ξ )2/A. (C3)

Setting A = Ly/(NφLx), ξ = (k + qyd)/M and defining

β = 1

d2

π

Nφ

Lx

Ly

,

we get

1

Nφ

Z∑
qx

exp

(
− π

Nφ

Ly

Lx

q2
x − i2πqx

k + qyd

M

)

=
√

Lx

NφLy

Z∑
n

e−β(k+qyd−nM)2
. (C4)

To handle GV (k,qy) in Eq. (C2), we need to be able to insert
powers of q2

x into the qx sum. This can be achieved by taking

partial derivative with respect to πLy

NφLx
= βd2 on Eq. (C4).

For the simple case of Vq = 4πl2
B[V0 + V1 · (1 − q2l2

B)] as in
Eq. (61), we find

GV (k,qy) =
√

Lx

NφLy

Z∑
n

e−β(k+qyd−nM)2

×{V0 + 2βV1[(k + qyd − nM)2 − (qyd)2]}.
(C5)

Plugging this back to Eq. (C1), we get

H = C

Z∑
qy

e−β(qyd)2
M∑
j1

′
M∑
j2

′
Z∑
n

e−β(j1−j2+qyd−nM)2

×{V0 + 2βV1[(j1 − j2 + qyd − nM)2 − (qyd)2]}

×
Sj1∑
s1

Sj2∑
s2

ψ
†
j1,s1

ψ
†
j2,s2

ψj2−qyd,s2ψj1+qyd,s1 , (C6)

where C = √
Lx/(NφLy) is an inconsequential overall factor.

At last, recall from Eq. (59) that the range of summations
over j1 and j2 each contain an arbitrary shift. We can keep the
outer sum over j1 general, while make a convenient choice for
the inner sum over j2. We define 
 = j2 − j1 and rewrite the
above equation as

H = C

Z∑
qy

e−β(qyd)2
M∑
j

′ ∑



Z∑
n

e−β(
−qyd+nM)2

×{V0 + 2βV1[(
 − qyd + nM)2 − (qyd)2]}

×
Sj∑
s

Sj+
∑
s ′

ψ
†
j,sψ

†
j+
,s ′ψj+
−qyd,s ′ψj+qyd,s , (C7)

where 
 is summed over an interval of length M centered
around qyd,


 ∈ [qyd − �M/2� . . qyd − �M/2� + M). (C8)

We make this special choice for the 
 sum to facilitate
later truncations in the thin-torus limit β � 1. This proves
Eq. (65).
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Ye, and M. D. Lukin, Phys. Rev. Lett. 110, 185302 (2013).
[47] A. Kol and N. Read, Phys. Rev. B 48, 8890 (1993).
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