Skip to main content

Data fusion via intrinsic dynamic variables: An application of data-driven Koopman spectral analysis

Author(s): Williams, Matthew O; Rowley, Clarence W; Mezić, Igor; Kevrekidis, Ioannis G

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr15p53
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWilliams, Matthew O-
dc.contributor.authorRowley, Clarence W-
dc.contributor.authorMezić, Igor-
dc.contributor.authorKevrekidis, Ioannis G-
dc.date.accessioned2016-10-17T14:14:45Z-
dc.date.available2016-10-17T14:14:45Z-
dc.date.issued2015-02-01en_US
dc.identifier.citationWilliams, Matthew O, Rowley, Clarence W, Mezić, Igor, Kevrekidis, Ioannis G. "Data fusion via intrinsic dynamic variables: An application of data-driven Koopman spectral analysis" EPL (Europhysics Letters), 109, 4, 40007-1 - 40007-6, doi:10.1209/0295-5075/109/40007en_US
dc.identifier.issn0295-5075-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr15p53-
dc.description.abstractWe demonstrate that the Koopman eigenfunctions and eigenvalues define a set of intrinsic coordinates, which serve as a natural framework for fusing measurements obtained from heterogeneous collections of sensors in systems governed by nonlinear evolution laws. These measurements can be nonlinear, but must, in principle, be rich enough to allow the state to be reconstructed. We approximate the associated Koopman operator using extended dynamic mode decomposition, so the method only requires time series of data for each set of measurements, and a single set of "joint" measurements, which are known to correspond to the same underlying state. We apply this procedure to the FitzHugh-Nagumo PDE, and fuse measurements taken at a single point with principal-component measurements.en_US
dc.format.extent40007-1 - 40007-6en_US
dc.relation.ispartofEPL (Europhysics Letters)en_US
dc.rightsThis is the author’s final manuscript. All rights reserved to author(s).en_US
dc.titleData fusion via intrinsic dynamic variables: An application of data-driven Koopman spectral analysisen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1209/0295-5075/109/40007-
dc.date.eissued2015-02-26en_US
dc.identifier.eissn1286-4854-

Files in This Item:
File Description SizeFormat 
RowleyEPLV109-2015.pdf4.19 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.