Skip to main content

EMBEDDABILITY FOR 3-DIMENSIONAL CAUCHY-RIEMANN MANIFOLDS AND CR YAMABE INVARIANTS

Author(s): Chanillo, Sagun; Chiu, Hung-Lin; Yang, Paul C.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr14x40
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChanillo, Sagun-
dc.contributor.authorChiu, Hung-Lin-
dc.contributor.authorYang, Paul C.-
dc.date.accessioned2019-04-05T21:50:57Z-
dc.date.available2019-04-05T21:50:57Z-
dc.date.issued2012-12-01en_US
dc.identifier.citationChanillo, Sagun, Chiu, Hung-Lin, Yang, Paul. (2012). EMBEDDABILITY FOR 3-DIMENSIONAL CAUCHY-RIEMANN MANIFOLDS AND CR YAMABE INVARIANTS. DUKE MATHEMATICAL JOURNAL, 161 (2909 - 2921). doi:10.1215/00127094-1902154en_US
dc.identifier.issn0012-7094-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr14x40-
dc.description.abstractLet M-3 be a closed Cauchy-Riemann (CR) 3-manifold. In this article, we derive a Bochner formula for the Kohn Laplacian in which the pseudo-Hermitian torsion does not play any role. By means of this formula we show that the nonzero eigenvalues of the Kohn Laplacian have a positive lower bound, provided that the CR Paneitz operator is nonnegative and the Webster curvature is positive. This means that M-3 is embeddable when the CR Yamabe constant is positive and the CR Paneitz operator is nonnegative. Our lower bound estimate is sharp. In addition, we show that the embedding is stable in the sense of Burns and Epstein.en_US
dc.format.extent2909 - 2921en_US
dc.languageEnglishen_US
dc.language.isoen_USen_US
dc.relation.ispartofDUKE MATHEMATICAL JOURNALen_US
dc.rightsAuthor's manuscripten_US
dc.titleEMBEDDABILITY FOR 3-DIMENSIONAL CAUCHY-RIEMANN MANIFOLDS AND CR YAMABE INVARIANTSen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1215/00127094-1902154-
dc.date.eissued2012-11-29en_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1007.5020v3.pdf304.07 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.