
ar
X

iv
:1

00
7.

50
20

v3
  [

m
at

h.
C

V
] 

 2
5 

O
ct

 2
01

0

EMBEDDABILITY FOR THREE-DIMENSIONAL CAUCHY-RIEMANN

MANIFOLDS AND CR YAMABE INVARIANTS

SAGUN CHANILLO, HUNG-LIN CHIU AND PAUL YANG

Abstract. Let M3 be a closed CR 3-manifold. In this paper, we derive a Bochner formula

for the Kohn Laplacian in which the pseudohermitian torsion doesn’t play any role. By

means of this formula we show that the nonzero eigenvalues of the Kohn Laplacian have

a lower bound, provided that the CR Paneitz operator is nonnegative and the Webster

curvature is positive. This means that M3 is embeddable when the CR Yamabe constant is

positive and the CR Paneitz operator is nonnegative. Our lower bound estimate is sharp.

In addition, we show that the embedding is stable in the sense of Burns and Epstein. Lastly

we show that the CR Paneitz operator for embeddable CR structures given by polynomial

deformations and close to the standard CR structure on S3 is positive on the subspace of

spherical harmonics ⊕p≥1Hp,0 ⊕H0,p.

1. Introduction,Statements and Notation

It is well known that the embedding problem remains open for three dimensional CR

manifolds. In contrast, in the higher dimensional case, any strictly pseudoconvex, closed CR

manifold can always be realized as an embedding in some C
n (see [3]). In the 3-dimensional

case, there exists nonembeddable examples [1, 14], and in general generic CR structures are

not embeddable (see [2] and [4]).

In his paper [13], L. Lempert asked two fundamental questions about the embeddability

problem. The first one is related to the closedness property of CR structures and the second

one is to the stability property. In this paper we address Lempert’s questions.
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Throughout this paper, we will use the notations and terminology in ([11]) unless otherwise

specified. Let (M,J, θ) be a closed three-dimensional pseudo-hermitian manifold, where θ is

a contact form and J is a CR structure compatible with the contact bundle ξ = ker θ. The

CR structure J decomposes C⊗ξ into the direct sum of T1,0 and T0,1 which are eigenspaces

of J with respect to i and −i, respectively. The Levi form 〈 , 〉Lθ
is the Hermitian form

on T1,0 defined by 〈Z,W 〉Lθ
= −i

〈
dθ, Z ∧W

〉
. We can extend 〈 , 〉Lθ

to T0,1 by defining
〈
Z,W

〉
Lθ

= 〈Z,W 〉Lθ
for all Z,W ∈ T1,0. The Levi form induces naturally a Hermitian form

on the dual bundle of T1,0, denoted by 〈 , 〉L∗

θ
, and hence on all the induced tensor bundles.

Integrating the hermitian form (when acting on sections) over M with respect to the volume

form dV = θ ∧ dθ, we get an inner product on the space of sections of each tensor bundle.

We denote the inner product by the notation 〈 , 〉. For example

(1.1) 〈ϕ, ψ〉 =
∫

M

ϕψ̄ dV,

for functions ϕ and ψ.

Let {T, Z1, Z1̄} be a frame of TM ⊗C, where Z1 is any local frame of T1,0, Z1̄ = Z1 ∈ T0,1

and T is the characteristic vector field, that is, the unique vector field such that θ(T ) =

1, dθ(T, ·) = 0. Then
{
θ, θ1, θ1̄

}
, the coframe dual to {T, Z1, Z1̄}, satisfies

(1.2) dθ = ih11̄θ
1 ∧ θ1̄

for some positive function h11̄. We can always choose Z1 such that h11̄ = 1; hence, throughout

this paper, we assume h11̄ = 1

The pseudohermitian connection of (J, θ) is the connection ∇ on TM ⊗C (and extended

to tensors) given in terms of a local frame Z1 ∈ T1,0 by

∇Z1 = θ1
1 ⊗ Z1, ∇Z1̄ = θ1̄

1̄ ⊗ Z1̄, ∇T = 0,

where θ1
1 is the 1-form uniquely determined by the following equations:
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dθ1 = θ1 ∧ θ11 + θ ∧ τ 1

τ 1 ≡ 0 mod θ1̄

0 = θ1
1 + θ1̄

1̄,

(1.3)

where θ1
1 and τ 1 are called the connection form and the pseudohermitian torsion, re-

spectively. Put τ 1 = A1
1̄θ

1̄. The structure equation for the pseudohermitian connection

is

dθ1
1 = Rθ1 ∧ θ1̄ + 2iIm(A1̄

1,1̄θ
1 ∧ θ),

where R is the Tanaka-Webster curvature.

We will denote components of covariant derivatives with indices preceded by a comma; thus

we write A1̄
1,1̄θ

1∧θ. The indices {0, 1, 1̄} indicate derivatives with respect to {T, Z1, Z1̄}. For

derivatives of a scalar function, we will often omit the comma, for instance, ϕ1 = Z1ϕ, ϕ11̄ =

Z1̄Z1ϕ− θ11(Z1̄)Z1ϕ, ϕ0 = Tϕ for a (smooth) function.

Next we consider several natural differential operators occuring in this paper. For a

detailed description, we refer the reader to the article [11]. For a smooth function ϕ, the

Cauchy-Riemann operator ∂b can be defined locally by

∂bϕ = ϕ1θ
1,

and we write ∂̄b for the conjugate of ∂b. A function ϕ is called CR holomorphic if ∂̄bϕ = 0.

the divergence operator δb takes (1, 0)-forms to functions by δb(σ1θ
1) = σ1,

1, and similarly,

δ̄b(σ1̄θ
1̄) = σ1̄,

1̄.

If σ = σ1θ
1 is compactly supported, Stokes’ theorem applied to the 2-form θ ∧ σ implies

the divergence formula:
∫

M

δbσθ ∧ dθ = 0.
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It follows that the formal adjoint of ∂b on functions with respect to the Levi form and the

volume element θ ∧ dθ is ∂∗b = −δb. The Kohn Laplacian on functions determined by θ is

�b = 2∂̄∗b ∂̄b,

Define Pϕ = (ϕ1̄
1̄
1 + iA11ϕ

1)θ1 (see [11]) which is an operator that characterizes CR-

pluriharmonic functions, and Pϕ = (ϕ1
1
1̄ − iA1̄1̄ϕ

1̄)θ1̄, the conjugate of P . The CR Paneitz

operator P0 is defined by

P0ϕ = δb(Pϕ).

More explicitly,

P0f =
1

4
(�b�bf − 4i(A11f1)1)

=
1

8

(
(�b�b +�b�b)f + 8Im(A11f1)1

)
.

It follows that P0 is a real and symmetric operator.

Definition 1.1. The Paneitz operator P0 is nonnegative if

∫

M

(P0ϕ)ϕ̄ ≥ 0,

for all smooth functions ϕ.

Note that the nonnegativity of P0 is a CR invariant in the sense that it is independent

of the choice of the contact form θ. This follows by observing that if θ̃ = e2fθ be another

contact form, we have the following transformation laws for the volume form and the CR

Paneitz operator respectively (see Lemma 7.4 in [9]):

θ̃ ∧ dθ̃ = e4fθ ∧ dθ; P̃0 = e−4fP0.

We also observe that when the Webster torsion A11 ≡ 0, then the Paneitz operator P0 is

given by,

P0 =
1

4
�b�b.
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Thus the vanishing of torsion implies that P0 ≥ 0. We also recall that the vanishing of

torsion is equivalent to LTJ = 0 where L is the Lie derivative.

In the higher dimensional case, there exists an analog of P0 which satisfies the covariant

property. In this case, Graham and Lee, in [8], had shown the nonnegativity of P0.

Definition 1.2. Suppose that θ̃ = e2fθ. The CR Yamabe constant is defined by

inf θ̃ {
∫
M
R̃ θ̃ ∧ dθ̃ :

∫
θ̃ ∧ dθ̃ = 1}.

The CR Yamabe constant is a CR invariant. We are now in a position to describe our

main theorems. In this paper we show

Theorem 1.3. Let M3 be a closed CR manifold. If P0 ≥ 0 and R > 0, then the non-zero

eigenvalues λ of �b satisfy λ ≥ minR, hence the range of �b is closed. If P0 ≥ 0 and the

CR Yamabe constant > 0, then M3 can be embedded into C
n, for some n.

Remark 1.4. The fact �b has closed range is equivalent to global embedding is a result of

Kohn ([10])

In section 3 we prove the stability theorem:

Theorem 1.5. Under (3.1), (3.4), (3.5), the embedding is stable which means that if |t| is

small enough then the CR embedding Ψt is close to Ψ0.

Remark 1.6. If M is embeddable then the Paneitz operator P0 has closed range (see [5]).

We now turn our attention to section 4, where we show theonem 1.3 has a conuerse. We

shall also compare our result with those of Burns-Epstein [4] and Bland [2]. . Let (M,J, θ)

be a CR structure. Let φ be a complex valued smooth function on M, such that ‖φ‖∞ < 1.

For θ fixed consider a deformation of the CR structure given by

Zφ
1̄
= Z1̄ + φZ1.
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Our first order of business in section 4 is to compute in generality the connecfion forms,

torsion forms and Webster-Tanaka curvature for the deformed structure. Now we specialize

the situation to S3 and consider small deformations of the standand CR structure of the

sphere. In particular our goal is to consider the deformed structure on S3 given by,

Zt
1̄ = Zφt

1̄
= F (Z1̄ + tφZ1),

where F = (1 − t2|φ|2)−1/2, Z1̄ = z̄2
∂
∂Z1

− z̄1
∂
∂Z2

and t ∈ (−ǫ, ǫ). The factor F is introduced

to normalize the Levi form so that h11̄ ≡ 1. For this structure we compute the deformed

Paneitz operator P t
0. The main goal in Section 4 is to study the variations of P t

0 . We now

consider the 3-sphere S3 ⊂ C
2 ∋ (z1, z2) and denote by

Pp,q = span{za1zb2z̄c1z̄d2 |a+ b = p, c+ d = q}

and the spherical harmonics

Hp,q = {f ∈ Pp,q| −∆s3f = (p+ q)(p+ q + 2)f}.

For a given φ ∈ C∞(S3) one has the Fourier representation

φ ∼
∑

φpq

where φpq is the projection of φ onto Hp,q.

Definition 1.7. We say φ satisfies condition (BE) if and only if

φpq ≡ 0 for p < q + 4, q = 0, 1, · · · .

Remark 1.8. Since for p > q

Pp,q = Hp,q ⊕ · · · ⊕Hp−q,0.

It follows that if φ ∈ Pp,q, then φ satisfies (BE) if and only if p ≥ q + 4.
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Burns and Epstein proved in [4] that for t ∈ (−ǫ, ǫ) and φ satisfying (BE) the CR structure

embeds into some C
n. Conversely Bland [2] showed that embeddability of a CR structure

close to the standard structure on S3 implies condition (BE). To summarize we have

Theorem [ Burns-Epstein-Bland]. A CR structure close to the standard structure on

S3 is embeddable if and only if φ satisfies condition (BE).

We define the space

H = C∞(S3) ∩ (⊕p≥1Hp,0 ⊕H0,p) .

The main result proved in section 4 is

Proposition 1.9. Let φ ∈ Pp1,q1. For a CR structure given by deformation by φ and close to

the standard structure on S3, i.e., t ∈ (−ǫ, ǫ), the associated CR Paneitz operator is positive

on H, provided φ satisfies (BE).

The proposition above is partial information about the behavior of the CR Paneitz operator

near the standard CR structure on S3. We will return to a fuller investigation in a later

paper.

We now outline the strategy of proof of Proposition 1.9. Since CR pluriharmonic functions

are annihilated by the Paneitz operator, we will study for f ∈ H, the quadratic form

(1.4) It(f) =< P t
0f, f > .

We show in Theorem 4.6 that for f ∈ H and φ ∈ C∞(S3),

(1.5) İt(f)|t=0 =
d

dt
It(f)|t=0 ≡ 0.
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Thus the first variation all vanish. The (BE) condition does not appear in the first variation

formula, but appears in the second variation formula. To compute the second variation, that

is to compute P̈ t
0|t=0, we perform a Morse decomposition of the functional Ït. It splits into

a stable part, called D2 which we handle via Proposition 4.7 and an unstable part which is

handled by proposition 4.8. The (BE) condition enters naturally into the unstable part by

means of an expressions E,

E = 4φ+ iφ0, φ0 = Tφ.

In fact if φ satisfies (BE) then there is no unstable part.

Writing f ∈ H as

f =
∑

k≥1

fk +
∑

k≥1

gk, fk ∈ Hk,0, gk ∈ H0,k,

we get by throwing away the stable part:

Proposition 1.10. For any φ ∈ C∞(S3), f ∈ H,

Ït(f)|t=0 =
d2

dt2
It(f)|t=0

≥ 2
∑

k,l

∫

S3

(k|φ|2 −Eφ̄)fk1 f
l
1 + 2

∑

k,l

∫

S3

(k|φ|2 − Eφ̄)gk1̄g
l
1̄
.

We now invoke the Hopf fibration to perform the integration in the right side of the

theorem above. Viewing S3 as a S1 fibration over CP 1 reduces the computation to doing

Fourier series on (−π, π). This is the content of Proposition 4.10. This proposition works

for general φ if k = l, but we have been unable to do the integration when k 6= l unless

φ ∈ Pp1,q1. We get

Proposition 1.11. For any φ ∈ Pp1,q1, f ∈ H,

Ït(f)|t=0 ≥ 2
∑

k

∫

S3

(k + p1 − q1 − 4)|φ|2(|fk1 |2 + |gk1̄ |2).
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We emphasize that the conclusion of Proposition 1.11 holds for even those φ ∈ Pp1,q1 for

which p1 < q1 + 4, i.e., for those values of p1, q1 that fail to satisfy condition (BE).

If however φ satisfies (BE), then it is evident for k ≥ 1, k + p1 − q1 − 4 ≥ 1 and thus

from the above theorem Ït(f)|t=0 > 0, for f ∈ H. Combining this fact with (1.5) and since

t ∈ (−ǫ, ǫ) we see readily that if φ satisfies (BE), then for t ∈ (−ǫ, ǫ), f ∈ H, we have

(1.6) It(f) =< P t
0f, f > > 0.

We also point out some other results in section 4 of independent interest. One such result

is Corollary 4.3, which states if φ ∈ Pp1,q1, with p1 = q1 + 4, then the deformed structure on

S3 also has zero torsion and conversely if φ is a homogeneous polynomial in Pp1,q1, then for

precisely those for which p1 = q1 + 4, the new torsion will also vanish.

Lastly we comment that our second variation formula shows that for φ ∈ Pp1,q1 and

f ∈ Hp,0 or f ∈ H0,p, the possible negative direction of Ït(f)|t=0 can only lie in the space

f ∈ Hp,0 or f ∈ H0,p for p < q1+4−p1. A more careful computation of the second variation

of Paneitz operator for Rossi’s example φ ≡ 1, which we have chosen not to display, shows

that the negative directions are given exactly by the functions f = z1, z2, z̄1, z̄2.

Acknowledgment. The first author’s research was supported in part by NSF grant

DMS-0855541, the second author’s research was supported in part by CIZE Foundation and

in part by NSC 96-2115-M-008-017-MY3, and the third author’s research was supported in

part by NSF grant DMS-0758601.

2. The Embedding Criterion

In this section, we will derive the Bochner formula for the Kohn Laplacian. We need

some commutation relations, for which we refer the reader to Lee’s paper [11]. This formula

contains no term related to pseudohermitian torsion. In this sense it seems to be more

natural than the one for the sublaplacian. We have the following Bochner formula:
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Proposition 2.1. For any complex-valued function ϕ ,we have

−1

2
�b|∂̄bϕ|2 = (ϕ1̄1̄ϕ̄11 + ϕ1̄1ϕ̄11̄)

− 1

2
< ∂̄bϕ, ∂̄b�bϕ > − < ∂̄b�bϕ, ∂̄bϕ >

− < P̄ϕ, ∂̄bϕ > +R|∂̄bϕ|2

(2.1)

Proof. We calculate

−1

2
�b|∂̄bϕ|2 = −1

2
�b < ϕ1̄θ

1̄, ϕ1̄θ
1̄ >

= (ϕ1̄ϕ̄1)1̄1

= (ϕ1̄1̄ϕ̄1 + ϕ1̄ϕ̄11̄)1

= ϕ1̄1̄1ϕ̄1 + ϕ1̄1̄ϕ̄11 + ϕ1̄1ϕ̄11̄ + ϕ1̄ϕ̄11̄1,

= ϕ1̄1̄ϕ̄11 + ϕ1̄1ϕ̄11̄ −
1

2
< ∂̄bϕ, ∂̄b�bϕ > +ϕ1̄1̄1ϕ̄1,

(2.2)

here, for the last equality, we use the identity

−1

2
< ∂̄bϕ, ∂̄b�bϕ >= ϕ1̄ϕ̄11̄1

Therefore, the Bochner formula is completed if we show that

(2.3) ϕ1̄1̄1ϕ̄1 = − < ∂̄b�bϕ, ∂̄bϕ > − < P̄ϕ, ∂̄bϕ > +R|∂̄bϕ|2.

By the commutation relations, we have.

ϕ1̄1̄1ϕ̄1 = (ϕ1̄11̄ − iϕ1̄0 +Rϕ1̄)ϕ̄1

= (ϕ11̄1̄ − iϕ01̄ − iϕ1̄0 +Rϕ1̄)ϕ̄1

= (P̄1ϕ+ iA1̄1̄ϕ1 − iϕ01̄ − iϕ1̄0 +Rϕ1̄)ϕ̄1

= (P̄1ϕ)ϕ̄1 +Rϕ1̄ϕ̄1 + (iA1̄1̄ϕ− iϕ01̄ − iϕ1̄0)ϕ̄1

=< P̄ϕ, ∂̄bϕ > +R|∂̄bϕ|2 + (iA1̄1̄ϕ1 − iϕ01̄ − iϕ1̄0)ϕ̄1,

=< P̄ϕ, ∂̄bϕ > +R|∂̄bϕ|2 + 2(iA1̄1̄ϕ1 − iϕ01̄)ϕ̄1,

(2.4)



EMBEDDABILITY FOR CR-MANIFOLDS 11

and

− 1

2
< ∂̄b�bϕ, ∂̄bϕ >

=< ϕ1̄11̄θ
1̄, ϕ1̄θ

1̄ >

= ϕ1̄11̄ϕ̄1

= (ϕ11̄1̄ − iϕ01̄)ϕ̄1

= (P̄1ϕ+ iA1̄1̄ϕ1 − iϕ01̄)ϕ̄1

=< P̄ϕ, ∂̄bϕ > +(iA1̄1̄ϕ1 − iϕ01̄)ϕ̄1

(2.5)

Combining (4.55) and (4.61) ,we obtain (4.54). This completes the Proposition. �

We now prove Theorem 1.3.

Proof of Theorem 1.3 : Let ϕ be an eigenfunction with respect to a nonzero eigenvalue

λ, that is, ϕ is not a CR function. Taking the integral of both sides of the Bochner formula

(2.1), we have

0 =

∫
ϕ1̄1̄ϕ̄11 +

∫
ϕ1̄1ϕ̄11̄ −

3

2
λ

∫
|∂̄bϕ|2

+

∫
< P0ϕ, ϕ > +

∫
R|∂̄bϕ|2.

(2.6)

On the other hand,

∫
ϕ1̄1ϕ̄11̄ =

1

4

∫
< �bϕ,�bϕ >=

λ

2

∫
|∂̄bϕ|2.

Taking together the above two formulae, we obtain

λ

∫
|∂̄bϕ|2 =

∫
|ϕ1̄1̄|2 +

∫
< P0ϕ, ϕ > +

∫
R|∂̄bϕ|2

≥
∫

< P0ϕ, ϕ > +

∫
R|∂̄bϕ|2.

(2.7)

Therefore, if P0 is nonnegative and R > 0, then we immediately have that λ ≥ minR. Since

the spectrum spec(�b) of the Kohn Laplacian in (0,∞) only consists of point eigenvalues
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(see Theorem 1.3 in [4]), it follows that the range of �b is closed. Applying the result of

Kohn [10], we conclude M is embeddable.

To prove the second part of Theorem 1.3 note if the CR Yamabe constant > 0, then we

can choose a contact form such that the Webster curvature with respect to this contact form

is positive and so we conclude by the first part of Theorem 1.3.

Remark 2.2. The estimate for the nonzero eigenvalues is sharp. For example, the standard

sphere S3 as a pseudohermitian 3-manifold has the smallest nonzero eigenvalue λ = 2 = R,

for details, see [6].

Remark 2.3. In general, let M2n+1 be a pseudohermitian manifold. The Bochner formula

for the Kohn Laplacian is as follows:

−1

2
�b|∂̄bϕ|2 =

∑

α,β

(ϕᾱβ̄ϕ̄αβ + ϕᾱβϕ̄αβ̄)

− 1

2n
< ∂̄bϕ, ∂̄b�bϕ > −(n + 1)

2n
< ∂̄b�bϕ, ∂̄bϕ >

− 1

n
< P̄ϕ, ∂̄bϕ > +

(n− 1)

n
< Pϕ̄, ∂bϕ̄ >

+Ric(∇bϕC,∇bϕC),

(2.8)

where ∇bϕC is the corresponding complex (1, 0)-vector of ∇bϕ. The proof of (2.8) is the same

as (2.1). Again, in case n = 2, using this formula we also obtain that the sharp lower bound

of nonzero eigenvalues of the Kohn Laplacian �b is
4
3
k0, provided that the Ricci curvature

has the lower bound:

Ric(X,X) ≥ k0|X|2,

for some k0 and for all complex (1, 0)-vector X. Unfortunately, in the higher dimensional

cases n ≥ 3, the coefficient (n−1)
n

of the term < Pϕ̄, ∂bϕ̄ > is too large to get the lower bound

of nonzero eigenvalues of the Kohn Laplacian �b immediately.

Example 2.4. In this example, we shall compute the Webster curvature of Rossi’s global

nonembeddability example together with a suitable contact structure and show that the
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associated CR Paneitz operators are not nonnegative. Let S3 = {(z1, z2) ∈ C
2 ||z1|2+ |z2|2−

1 = 0} be the boundary of the unit ball in C
2 with the induced CR structure given by the

complex vector field

Z1 = z̄2
∂

∂z1
− z̄1

∂

∂z2
,

and contact form

θ =
i(∂̄u− ∂u)

2
|S3 ,

where u = |z1|2 + |z2|2 − 1. Taking the admissible coframe

θ1 = z2dz1 − z1dz2,

we have dθ = iθ1∧θ1̄. Rossi’s example is the CR manifold S3 together with the CR structure

given by

Lt = Z1 + tZ̄1,

for all t ∈ R and t 6= 1,−1. Now, for |t| < 1, taking the contact form

θ(t) = θ,

and the admissible coframe

θ1(t) =
1√

1− t2
(θ1 − tθ1̄),

we have dθ(t) = iθ1(t) ∧ θ1̄(t) and the following Proposition:

Proposition 2.5. For |t| < 1, with respect to the coframe {θ(t), θ1(t), θ1̄(t)}, the connection

form and pseudohermitian torsion are as follows

(2.9) θ1
1(t) = θ1

1 − 4t2i

1− t2
θ =

−2(1 + t2)

1− t2
iθ;

and

τ 1(t) =
4ti

1− t2
θ1̄(t),

where

θ1
1 = −z̄1dz1 − z̄2dz2 + z1dz̄1 + z2dz̄2 = −2iθ.
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In addition, the Webster curvature is R(t) = 2(1+t2)
1−t2

.

Proof. We just check that forms θ1
1(t), τ 1(t) satisfy the equations (1.3). Finally, after a

direct computation, we see that dθ1
1(t) = 2(1+t2)

1−t2
θ1 ∧ θ1̄, so R(t) = 2(1+t2)

1−t2
. �

Similarly, for |t| > 1, take the contact form θ(t) and the admissible coframe θ1(t) as follows:

θ(t) = −θ, θ1(t) =
1√
t2 − 1

(θ1 + tθ1̄).

Then we have

τ 1(t) =
4ti

1− t2
θ1̄(t) and R(t) =

2(1 + t2)

t2 − 1

From Theorem 1.3 and the above Proposition, we immediately obtain that the CR Paneitz

operator of Rossi’s nonembeddable manifolds are negative.

3. Stability of Embeddability

We now consider stability issues, see [4] and [12] for earlier work. We have a fixed CR

structure on a compact manifold (M3, θ, J). Let us denote by L̄ the CR vector field on M3.

We now perturb L̄ by a smooth family of functions ϕ(·, t) = ϕt(·) ,where (·) represents a

point on M, and t ∈ (−ε, ε). We assume always,

(3.1) Dα
z,sϕ(z, s, t)|t=0 = 0, |α| ≤ l0, l0 ≥ 4, (z, s) ∈M.

We define

(3.2) L̄t = L̄+ ϕ(·, t)L.

Associated to L̄t we form the associated ∂̄
(t)
b -Laplacian operator,

(3.3) �
(t)
b = ∂̄

(t)∗
b ∂̄

(t)
b .
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We now use our main result to guarantee embedding of our CR structure in C
N . Thus we

assume that along the deformation path in t,

(3.4) the associated Paneitz operator P
(t)
0 ≥ 0,

(3.5) the CR Yamabe constant ≥ c > 0.

By our main result (Theorem 1.3), using (3.4) and (3.5) it follows that

(3.6) λ1(�
(t)
b ) ≥ ν > 0,

with ν independent of t. Thus by using the construction of Boutet de Monvel in [3] or the

exposition in Chen and Shaw’s book [7], we can embed for ε > 0 small enough the CR

structures via a map Ψt into the same C
N , i.e.,

(3.7) Ψt : (M, θ, Jt) −→ C
N .

The question arises if the maps Ψt are close in say the sup-norm in t. We have the following

theorem which we re-state from the introduction:

THEOREM 1.5. Under (3.1), (3.4), (3.5), for any δ > 0, there exists ε > 0, so that

sup
t∈[−ε,ε]

‖Ψt −Ψ0‖Ck(M) < δ, k = k(l0).

Proof. The proof of this theorem is abstract and relies on an identity in [4]. We use Proposi-

tion 5.55 in [4]. We denote the projection into the zero eigenspace of �
(t)
b by ℑϕt , which is the

Szego projector. By the spectral theorem and (3.6) if |λ| = ν/2, the resolvent (�
(t)
b − λ)−1

is well-defined and so

ℑϕt =

∫

|λ|=ν/2

(�
(t)
b − λ)−1dλ,

and it is immediate that ℑϕt is a bounded operator on L2(M). As observed in [4] as a

consequence of the above fact and their identity (5.58) they obtain the inequality (5.60)
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which we re-state,

(3.8) ‖ℑϕt −ℑϕ0‖L2(M) ≤ CνA‖ϕt − ϕ0‖L∞(M),

where A is the sup norm of some high enough derivative of ϕt − ϕ0. But by our hypothesis

(3.1) the right side of (3.8) is smaller than δ > 0, for ε > 0, sufficiently small.

Now recall the construction of Boutet de Monvel. Using the notation in [7], page 318, the

embedding for each coordinate chart is given by a CR function ht (we are in CR dimension

1), where

(3.9) ht = ℑϕt
(
ψe−τϕp

)
, τ → ∞.

Now note ht − h0 also satisfy an equation, that is,

(3.10) �
(t)
b (ht − h0) =

(
�

(0)
b −�

(t)
b

)
(h0).

From (3.8), (3.9), ‖ht − h0‖L2(M) < δ.

From (3.1) and (3.10), the right side of (3.10) is small in the C∞-norm. Since we have (3.6),

it now implies by sub-elliptic regularity that for δ > 0, there exists ε0,

(3.11) sup
t∈(−ε0,ε0)

‖ht − h0‖C∞(M) ≤ δ.

In fact by differentiation of (3.10) in t, we may also obtain higher stability in t, provided we

replace (3.1) by the stronger hypothesis that Dα
z,sD

β
t ϕ(z, s, 0) = 0 for large enough |α|, |β|.

This proves our theorem since on coordinate charts of M , the map Ψt is given by ht. �

4. The second variation of the Paneitz operator

Our goal in this section is to investigate CR structures close to the standard structure

on S3 and prove Theorem 1.9, which is a converse to Theorem 1.3. To achieve our goal we

compute the second variation of the Paneitz operator. Let (M,J, θ) be a three-dimensional

pseudo-hermitian manifold. In the computation, the contact form θ is always fixed and we

suppose that the CR structure J is given by the the (0, 1)-complex vector field Z1̄.
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Suppose φ ∈ C∞(M) with |φ| < 1. Then the complex vector field

(4.1) Z1̄
φ = Z1̄ + φZ1

defines a strictly pseudoconvex CR structure on M .

For the purpose of computing the second variation, we need to know exactly what the

connection and torsion forms are for the manifold with CR structure defined by the complex

vector field (4.1). Therefore, first of all, we focus on the computation of the connection form

and torsion form and then use them to obtain the second variation of the Paneitz operator.

Let θ1 denote the (1, 0)-form dual to Z1. We take

(4.2) θ1φ = F (φ)(θ1 − φθ1̄)

as an admissible coframe, where

F = F (φ) =
1

(1− |φ|2)1/2 ,

which is a real function. For simplifying the computation, we normalize Z1̄
φ by setting

Z1̄
φ = F (φ)(Z1̄ + φZ1)

such that {Z1
φ, Z1̄

φ, T} is dual to {θ1φ, θ1̄φ, θ} and h11̄
φ ≡ h11̄. Now we are ready to compute

the connection and torsion forms, which are denoted by θ1
1
φ and τ 1φ, respectively. They are

determined by the following structure equations:

dθ1φ = θ1φ ∧ θ11φ + θ ∧ τ 1φ

τ 1φ = 0, mod θ1̄φ

h11̄φdh11̄
φ = θ1

1
φ + θ1̄

1̄
φ,

(4.3)

where h11̄φ is the inverse of h11̄
φ. Denote τ 1φ = A1

1̄
φθ1̄φ. Then we have the following

proposition



18 S. CHANILLO, H.-L. CHIU, P. YANG

Proposition 4.1. We have

θ1
1
φ = θ1

1 − F−1dF − F−1(B11θ
1 +B12θ

1̄ +B13θ);

A1
1̄
φ = A1

1̄ − F 2
(
φ0 + φθ1

1(T )− φθ1̄
1̄(T ) + φ2A1̄

1 − |φ|2A1
1̄

)
,

(4.4)

where

B11 = F 2
(
− 2F1 − φ̄F θ1̄

1̄(Z1̄) + φ̄F θ1
1(Z1̄)

− F φ̄1̄ − φ̄Fφ1 − 2φ̄F1̄ − |φ|2Fθ11(Z1) + |φ|2Fθ1̄1̄(Z1)
)
;

B12 = F 2
(
2|φ|2F1̄ + φFθ1

1(Z1)− φFθ1̄
1̄(Z1)

+ Fφ1 + φF φ̄1̄ + 2φF1 + |φ|2Fθ1̄1̄(Z1̄)− |φ|2Fθ11(Z1̄)
)
;

B13 = F 3
(
− φ̄(φ0 + φθ1

1(T )− φθ1̄
1̄(T )) + φ̄A1

1̄ − φA1̄
1

)
.

(4.5)

Proof. From the structure equations (1.3), we have

dθ1 = θ1 ∧ θ11 + θ ∧ τ 1,

thus

dθ1φ = d(Fθ1 − φFθ1̄)

= dF ∧ θ1 + Fdθ1 − d(φF ) ∧ θ1̄ − φFdθ1̄

= dF ∧ θ1 + Fθ1 ∧ θ11 + Fθ ∧ τ 1

− d(φF ) ∧ θ1̄ − φFθ1̄ ∧ θ1̄1̄ − φFθ ∧ τ 1̄

= (dF − Fθ1
1) ∧ θ1 + (d(φF )− φFθ1̄

1̄) ∧ θ1̄ + (−Fτ 1 + φFτ 1̄) ∧ θ.

(4.6)

On the other hand,

θ1φ ∧ θ11φ + θ ∧ τ 1φ

=(Fθ1 − φFθ1̄) ∧ θ11φ + θ ∧ τ 1φ

=(−Fθ11φ) ∧ θ1 + (φFθ1
1
φ) ∧ θ1̄ + (−τ 1φ) ∧ θ.

(4.7)
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Comparing (4.6) and (4.7), we see, by Cartan’s lemma, that there exists complex-valued

functions Bij, i, j = 1, 2, 3 such that

−Fθ11φ = (dF − Fθ1
1) +B11θ

1 +B12θ
1̄ +B13θ;

φFθ1
1
φ = −d(φF ) + φFθ1̄

1̄) +B21θ
1 +B22θ

1̄ +B23θ;

−τ 1φ = −Fτ 1 + φFτ 1̄ +B31θ
1 +B32θ

1̄ +B33θ,

(4.8)

and

(4.9) Bij = Bji.

Therefore, from (4.8), we have

A1
1̄
φ(Fθ1̄ − φ̄F θ1)

=A1
1̄
φθ1̄

=τ 1φ

=Fτ 1 − φFτ 1̄ −B31θ
1 −B32θ

1̄ − B33θ

=FA1
1̄θ

1̄ − φFA1̄
1θ

1 − B31θ
1 − B32θ

1̄ − B33θ,

hence, comparing the coeficients, we get

(4.10) FA1
1̄
φ = FA1

1̄ −B32;

(4.11) − F φ̄A1
1̄
φ = −FφA1̄

1 − B31;

(4.12) B33 = 0
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Taken together (4.10) and (4.11) implies

A1
1̄
φ = A1

1̄ −
B32

F
=
φ

φ̄
A1̄

1 +
B31

φ̄F
,

that is,

(4.13) φ̄FA1
1̄ − φ̄B32 = φFA1̄

1 +B31.

Now, from (4.8) again, multiplying the first formula by φ and adding the second formula,

we get

0 = φ(dF − Fθ1
1) + φB11θ

1 + φB12θ
1̄ + φB13θ

− d(φF ) + φFθ1̄
1̄ +B21θ

1 +B22θ
1̄ +B23θ

= −Fdφ− φFθ1
1 + φFθ1̄

1̄ + (φB11 +B21)θ
1 + (φB12 +B22)θ

1̄ + (φB13 +B23)θ

= (−Fφ1 − φFθ1
1(Z1) + φFθ1̄

1̄(Z1) + φB11 +B21)θ
1

+ (−Fφ1̄ − φFθ1
1(Z1̄) + φFθ1̄

1̄(Z1̄) + φB12 +B22)θ
1̄

+ (−Fφ0 − φFθ1
1(T ) + φFθ1̄

1̄(T ) + φB13 +B23)θ,

that is,

(4.14) − Fφ1 − φFθ1
1(Z1) + φFθ1̄

1̄(Z1) + φB11 +B21 = 0

(4.15) − Fφ1̄ − φFθ1
1(Z1̄) + φFθ1̄

1̄(Z1̄) + φB12 +B22 = 0

(4.16) − Fφ0 − φFθ1
1(T ) + φFθ1̄

1̄(T ) + φB13 +B23 = 0.

Multiplying (4.13) by φ and subtracting (4.16) we obtain

B23 =
Fφ0 + φFθ1

1(T )− φFθ1̄
1̄(T ) + φ2FA1̄

1 − |φ|2FA1
1̄

(1− |φ|2)

= F 3(φ0 + φθ1
1(T )− φθ1̄

1̄(T ) + φ2A1̄
1 − |φ|2A1

1̄).

(4.17)
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Since F 2 = 1 + |φ|2F 2, substituting (4.17) into (4.13), we obtain

(4.18) B13 = F 3
(
− φ̄(φ0 + φθ1

1(T )− φθ1̄
1̄(T )) + φ̄A1

1̄ − φA1̄
1

)

Now, substituting (4.17) into (4.10), we obtain

(4.19) A1
1̄
φ = A1

1̄ − F 2
(
φ0 + φθ1

1(T )− φθ1̄
1̄(T ) + φ2A1̄

1 − |φ|2A1
1̄

)

Finally, to complete the proof of the proposition, we need to determine B11 and B12. Taking

the conjugate of the first formula of (4.8), we get

−Fθ1̄1̄φ = (dF − Fθ1̄
1̄) +B11θ

1̄ +B12θ
1 +B13θ

= (dF − F (−θ11 + h11̄dh11̄)) +B11θ
1̄ +B12θ

1 +B13θ

= dF + Fθ1
1 − Fh11̄dh11̄ +B11θ

1̄ +B12θ
1 +B13θ.

On the other hand,

−Fθ1̄1̄φ = −F (−θ11φ + h11̄dh11̄)

= −(dF − Fθ1
1)− B11θ

1 − B12θ
1̄ −B13θ − Fh11̄dh11̄,

where the last equality is due to the first formula of (4.8). Comparing the above two formula,

we have

2dF = (−B11 −B12)θ
1 + (−B12 − B11)θ

1̄ + (−B13 −B13)θ,

which implies that

(4.20) B12 = −B11 − 2F1̄.

Substituting (4.20) into (4.14), we get

(4.21) φB11 = B11 + 2F1̄ + Fφ1 + φFθ1
1(Z1)− φFθ1̄

1̄(Z1).

Now multiplying (4.21) by φ̄ and subtracting the conjugate of (4.21), we obtain

B11 = F 2
(
− 2F1 − φ̄F θ1̄

1̄(Z1̄) + φ̄F θ1
1(Z1̄)

− F φ̄1̄ − φ̄Fφ1 − 2φ̄F1̄ − |φ|2Fθ11(Z1) + |φ|2Fθ1̄1̄(Z1)
)
.

(4.22)
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Substituting this into (4.20), we get

B12 = F 2
(
2|φ|2F1̄ + φFθ1

1(Z1)− φFθ1̄
1̄(Z1)

+ Fφ1 + φF φ̄1̄ + 2φF1 + |φ|2Fθ1̄1̄(Z1̄)− |φ|2Fθ11(Z1̄)
)
.

(4.23)

This finishes the proof of the proposition. �

According to Example 2.4, we see that if S3 is the 3-sphere with the standard CR structure

and contact form then

A1
1̄ ≡ 0, h11̄ ≡ 1, R ≡ 2, θ1

1(T ) = −2i, θ1
1(Z1) = θ1

1(Z1̄) = 0.

Therefore we have the following corollary.

Corollary 4.2. On S3, the connection form and torsion with respect to the CR structure

given by

Z1̄
φ = Z1̄ + φZ1

are

θ1
1
φ = θ1

1 − F−1dF − F−1(B11θ
1 +B12θ

1̄ +B13θ);

A1
1̄
φ = −F 2(φ0 − 4iφ),

(4.24)

where

B11 = F 2(−2F1 − F φ̄1̄ − φ̄Fφ1 − 2φ̄F1̄);

B12 = F 2(2|φ|2F1̄ + Fφ1 + φF φ̄1̄ + 2φF1);

B13 = −φ̄F 3(φ0 − 4iφ).

(4.25)

Corollary 4.3. We have that on S3

(4.26) A1
1̄
φ = 0 ⇐⇒ φ0 = 4iφ⇐⇒ φ ∈ Pp,q, p = q + 4,

where

(4.27) Pp,q = sp{za1zb2z̄1cz̄2d| a+ b = p, c+ d = q}.
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We are now ready to compute the first and second variations of the Paneitz operator. The

background space is the standard 3-sphere S3 ⊂ C2 with the CR structure given by the

complex vector field

Z1̄ = z2
∂

∂z̄1
− z1

∂

∂z̄2
.

Fix φ, we use φt = tφ to define the deformation of the CR structures along φ, i.e., for each

t, the CR structure is defined by the complex vector field

(4.28) Zt
1̄ = Z1̄

φt = F (Z1̄ + tφZ1),

where F = 1
(1−t2|φ|2)1/2

. The Kohn Laplacian for the deformed structure will be denoted by

�
t
b. Then the coresponding Paneitz operator satisfies

(4.29) 4P t
0 = �

t
b�

t

b − 2Qt,

where Qt is a second order differential operator defined by Qtf = 2i(At11f1)1 for each smooth

function f , i.e.,

(4.30) Qt = 2i
(
At11Zt

1Z
t
1 + (Zt

1A
t11)Zt

1 − At11θt1̄1̄ (Z
t
1)Z

t
1

)
.

We would like to compute the first and second variations of 4P0 and use ”·” to denote

differentiation with respect to t. We have the following proposition.

Proposition 4.4. We have

(4.31) 4Ṗ t
0|t=0 = −2D�b − 2�bD + 4(EZ1Z1 + E1Z1),

and

4P̈ t
0|t=0 = 16|φ|2P0 + 2|φ|2(�b�b +�b�b) + 8D2 − 8Eφ̄∆b + 8∇b(Eφ̄)

+ 4(�b|φ|2)∆b − 8(∇b|φ|2)∆b − 4(∇b|φ|2)�b − 4�b(∇b|φ|2),
(4.32)
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where

D = φZ1Z1 + φ̄Z1̄Z1̄ + φ1Z1 + φ̄1̄Z1̄;

E = 4φ+ iφ0

Proof. The first and the second derivative with respect to t are, respectively,

(4.33) 4Ṗ t
0 = �̇

t
b�

t

b +�
t
b�̇

t

b − 2Q̇t;

and

(4.34) 4P̈ t
0 = �̈

t
b�

t

b +�
t
b�̈

t

b + 2�̇t
b�̇

t

b − 2Q̈t.

From (4.24) and (4.25), we have

θt11 (Z
t
1̄) = θt11 (F (Z1̄ + tφZ1))

= −(F1̄ +B12 + tφF1 + tφB11),

(4.35)

where

B11 = F 2(−2F1 − tF φ̄1̄ − t2φ̄Fφ1 − 2tφ̄F1̄)

= −t(F 3φ̄1̄)− t2(F 3φ̄φ1 + F 5(Z1|φ|2)) +O(t3),

(4.36)

and

B12 = F 2(2t2|φ|2F1̄ + tFφ1 + t2Fφφ̄1̄ + 2tφF1)

= t(F 3φ1) + t2(F 3φφ̄1̄) +O(t3).

(4.37)

Now we compute the Kohn Laplacian and its variations. We have

�
t

b = −2Zt
1̄Z

t
1 + 2θt11 (Z

t
1̄)Z

t
1

= −2Zt
1̄Z

t
1 − 2(F1̄ +B12 + tφF1 + tφB11)Z

t
1;

(4.38)
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thus

�̇
t

b = −2(Żt
1̄Z

t
1 + Zt

1̄Ż
t
1)

− 2(Ḟ1̄ + Ḃ12 + φF1 + tφḞ1 + φB11 + tφḂ11)Z
t
1

− 2(F1̄ +B12 + tφF1 + tφB11)Ż
t
1,

(4.39)

where for any complex vector field Z ∈ TS3, we have

ZF =
1

2
t2F 3(Z|φ|2)

Ḟ = t|φ|2F 3

ZḞ = tF 3(Z|φ|2) + 3

2
t3|φ|2F 5(Z|φ|2),

and

Żt
1̄ = Ḟ (Z1̄ + tφZ1) + FφZ1.

Next, we would like to expand −2Qt with respect to t at t = 0. Denote 4φ+ iφ0 as E. From

(4.24), we see that

At11̄ = F 2(4itφ− tφ0) = itF 2E,

hence, from (4.30),

−2Qt = −4i
(
At11Zt

1Z
t
1 + (Zt

1A
t11)Zt

1 −At11θt1̄1̄ (Z
t
1)Z

t
1

)

= −4i(At11Zt
1Z

t
1 + (Zt

1A
t11)Zt

1)− 4iAt11(F1 +B12 + tφ̄F1̄ + tφ̄B11)Z
t
1

= 4tF 2EZt
1Z

t
1 + (Zt

1(4tF
2E))Zt

1 + 4tF 2E(F1 +B12 + tφ̄F1̄ + tφ̄B11)Z
t
1,

(4.40)

where

4tF 2EZt
1Z

t
1 = 4tF 2EF (Z1 + tφ̄Z1̄)

(
F (Z1 + tφ̄Z1̄)

)

= 4F 4E(tZ1Z1 − t2φ̄∆b + t2φ̄1Z1̄) +O(t3);

(Zt
1(4tF

2E))Zt
1 = 4tF 2

(
(Z1 + tφ̄Z1̄)(F

2E)
)
(Z1 + tφ̄Z1̄)

= 4t(F 4E1)Z1 + 4t2F 4(φ̄E1̄Z1 + φ̄E1Z1̄) +O(t3);

(4.41)
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and

F1 +B12 + tφ̄F1̄ + tφ̄B11

=
1

2
t2F 3(Z1|φ|2) + tF 3φ̄1̄ + t2(F 3φ̄φ1) +O(t3)− t2F 3φ1φ̄

=
1

2
t2F 3(Z1|φ|2) + tF 3φ̄1̄ +O(t3).

(4.42)

Substituting (4.41) and (4.42) into (4.40), we get

−2Qt = 4tF 4(EZ1Z1 + E1Z1) + 4t2F 4E(−φ̄∆b + φ̄1Z1̄)

+ 4t2F 4(φ̄E1̄Z1 + φ̄E1Z1̄) + 4t2F 6Eφ̄1̄Z1 +O(t3).

(4.43)

Therefore, from (4.33) together with (4.36), (4.37), (4.38), (4.39) and (4.43), we get

�
t

b|t=0 = �b;

�̇
t

b|t=0 = −2(φZ1Z1 + φ̄Z1̄Z1̄ + φ̄1̄Z1̄ + φ1Z1);

−2Q̇t|t=0 = 4(EZ1Z1 + E1Z1),

hence the first variation of 4P0:

(4.44) 4Ṗ t
0|t=0 = −2D�b − 2�bD + 4(EZ1Z1 + E1Z1),

where

D = φZ1Z1 + φ̄Z1̄Z1̄ + φ1Z1 + φ̄1̄Z1̄.

Finally, for the second variation of Paneitz operator, we also need to compute the second

variation of the Kohn Laplacian. From (4.39), taking the derivative with respect to t, we get
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�̈
t

b = −2(Z̈t
1̄Z

t
1 + Zt

1̄Z̈
t
1 + 2Żt

1̄Ż
t
1)

− 2(F̈1̄ + B̈12 + 2φḞ1 + tφF̈1 + 2φḂ11 + tφB̈11)Z
t
1

− 4(Ḟ1̄ + Ḃ12 + φF1 + tφḞ1 + φB11 + tφḂ11)Ż
t
1

− 2(F1̄ +B12 + tφF1 + tφB11)Z̈
t
1,

(4.45)

where, for all Z ∈ TS3,

Z̈t
1̄ = F̈ (Z1̄ + tφZ1) + 2Ḟ φZ1;

F̈ = |φ|2F 3 + 3t2|φ|4F 5;

ZF̈ = F 3(Z|φ|2) + 15

2
t2|φ|2F 5(Z|φ|2) + 15

2
t4|φ|4F 7(Z|φ|2),

which implies that

(4.46) �̈
t

b|t=0 = 2|φ|2(�b +�b)− 4(Z1|φ|2)Z1̄ − 4(Z1̄|φ|2)Z1.

Therefore, from (4.34) together with (4.36), (4.37), (4.38), (4.39), (4.43) and (4.46), we get

4P̈ t
0|t=0 = 2|φ|2(�b +�b)�b +�b(2|φ|2(�b +�b))

− 4((Z1̄|φ|2)Z1 + (Z1|φ|2)Z1̄)�b − 4�b((Z1̄|φ|2)Z1 + (Z1|φ|2)Z1̄)

+ 8D2 + 8E(−φ̄∆b) + 8φ̄(E1̄Z1 + E1Z1̄) + 8E(φ̄1̄Z1 + φ̄1Z1̄),

where

�b(2|φ|2(�b +�b))

=4�b(|φ|2∆b)

=4[(�b|φ|2)∆b + |φ|2�b∆b − 2(|φ|21̄Z1∆b + |φ|21Z1̄∆b)]

=2|φ|2�b(�b +�b) + 4(�b|φ|2)∆b − 8(∇b|φ|2)∆b,
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hence

4P̈ t
0|t=0 = 16|φ|2P0 + 2|φ|2(�b�b +�b�b) + 8D2 − 8Eφ̄∆b + 8∇b(Eφ̄)

+ 4(�b|φ|2)∆b − 8(∇b|φ|2)∆b − 4(∇b|φ|2)�b − 4�b(∇b|φ|2).
(4.47)

This completes the proposition. �

For the reader’s convenience we list the following useful facts [6] that are necessary for the

subsequent computations. We recall Hp,q denotes the space of bi-graded spherical harmonics

of type (p, q) on S3. Then for f ∈ Hp,q, and the operators associated to the standard

structure on S3,

�bf = 2(p+ 1)qf, �bf = 2(q + 1)pf,

P0f = pq(p+ 1)(q + 1)f, ∆bf = −(f11̄ + f1̄1) = (2pq + p+ q)f.

(4.48)

Proposition 4.5. Let φ ∈ C∞(S3). Let g1̄ = 0 and f ∈ Hp,0 or H0,p. Then for any p ≥ 0

(4.49) < Ṗ t
0|t=0f, g >≡ 0.

Proof. We only display the proof for f ∈ Hp,0. The proof for f ∈ H0,p is similar. We

repeatedly integrate by parts and use g1̄ = 0 to finish the proof. From the first variation

(4.31), we have

4 < Ṗ t
0|t=0f, g > = −2 < D�bf, g > −2 < Df,�bg >

+ 4 < Ef11, g > +4 < E1f1, g > .

(4.50)

Integration by parts in the fourth term, and using g1̄ = 0 in the integration by parts and in

the second term yields

4 < Ṗ t
0|t=0f, f > = −2 < D�bf, g >,

= −4p(q + 1) < Df, g >= −4p(q + 1) < φf11 + φ1f1, g >

= 0,

(4.51)

where the last equality is due to the integration by parts and using g1̄ = 0. �
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Proposition 4.6. Let φ ∈ C∞(S3). Let f ∈ H = C∞(S3) ∩ ⊕p≥1Hp,0 ⊕H0,p. Then

< Ṗ t
0|t=0f, f >≡ 0.

Proof. The Proposition follows from Proposition 4.5 and the fact that the operator Ṗ t
0|t=0 is

real. �

Proposition 4.7. Let φ ∈ C∞(S3). Then

(4.52) < D2f, f > ≥ 0, for all f ∈ KerP0

Proof. Since f ∈ KerP0, its Fourier representation has the form

f =

∞∑

p,q=0

fpq, with p = 0 or q = 0.

Thus we divide it into a CR holomorphic part and a anti-CR holomorphic part, that is, f has

an expression f = u+ v, where u and v is a CR function and anti-CR function, respectively.

This means u1̄ = 0 and v1=0. Now we compute

(4.53) < D2f, f >=< D2u, u > + < D2v, v > + < D2u, v > + < D2v, u > .

Since u1̄ = 0, we get Du = φu11 + φ1u1. Thus,

< D2u, u > =< φ(φu11 + φ1u1)11, u > + < φ̄(φu11 + φ1u1)1̄1̄, u >

+ < φ1(φu11 + φ1u1)1, u > + < φ̄1̄(φu11 + φ1u1)1̄, u > .

(4.54)

Integrate by parts the last two terms to get

< φ1(φu11 + φ1u1)1, u > + < φ̄1̄(φu11 + φ1u1)1̄, u >

= − < φ(φu11 + φ1u1)11, u > − < φ(φu11 + φ1u1)1, u1̄ >

− < φ̄(φu11 + φ1u1)1̄1̄, u > − < φ̄(φu11 + φ1u1)1̄, u1 > .

(4.55)
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Taking together (4.54) and (4.55), and using u1̄ = 0 and integrating by parts again, we see

< D2u, u > = −
∫

S3

φ̄(φu11 + φ1u1)1̄ū1̄

=

∫

S3

|φ|2|u11|2 + |φ1|2|u1|2 +
∫

S3

(φ̄φ1u1ū1̄1̄ + φ̄1̄φu11ū1̄)

=

∫

S3

|φu11 + φ1u1|2 ≥ 0.

(4.56)

Similarly, using v1 = 0, we get

(4.57) < D2u, v >=

∫

S3

(φu11 + φ1u1)(φv̄11 + φ1v̄1).

Using the conjugate and the fact D2 is real, we see

(4.58) < D2v, v >= < D2v̄, v̄ > =

∫

S3

|φv̄11 + φ1v̄1|2,

and

(4.59) < D2v, u >=

∫

S3

(φu11 + φ1u1)(φv̄11 + φ1v̄1).

Substituting (4.56), (4.57), (4.58) and (4.59) into (4.53), we get

< D2f, f >=

∫

S3

|(φu11 + φ1u1) + (φ̄v1̄1̄ + φ̄1̄v1̄)|2 ≥ 0.

This finishes the proof. �

Using (4.47) write

(4.60) 4 < P̈ t
0|t=0f, f >= 8 < D2f, f > + < Rf, f > .

Proposition 4.8. Let φ ∈ C∞(S3). Let f ∈ Hp,0 or f ∈ H0,p, and g1̄ = 0. Then for all

p ≥ 0, we have

(a) < Rf, g >= 0, if f ∈ H0,p,

and

(b) < Rf, g >= 8

∫

S3

(p|φ|2 −Eφ̄)f1ḡ1̄ if f ∈ Hp,0.



EMBEDDABILITY FOR CR-MANIFOLDS 31

Proof. We first compute each term in the formula of the second variation of the Paneitz

operator (see (4.32)). For all f ∈ Hp,0, and g1̄ = 0.

By (4.48),

(4.61) < 16|φ|2P0f, g >= 0.

(4.62) < 2|φ|2(�b�b +�b�b)f, g >= 8p2
∫

S3

|φ|2f ḡ.

(4.63) < −8Eφ̄∆bf, g >= −8p

∫

S3

Eφ̄f ḡ.

Integrating by parts gives

< 8∇b(Eφ̄)f, g > = 8 < (Eφ̄)1̄f1 + (Eφ̄)1f1̄, g >= 8 < (Eφ̄)1̄f1, g >

= −8 < Eφ̄f11̄, g > −8 < Eφ̄f1, g1 >

= 8p

∫

S3

Eφ̄f ḡ − 8

∫

S3

Eφ̄f1ḡ1̄.

(4.64)

< 4(�b|φ|2)∆bf, g > = 4p < (�b|φ|2)f, g >

= 4p < �b(|φ|2f)− |φ|2�bf + 2(|φ|21̄f1 + |φ|21f1̄), g >

= 8p < (∇b|φ|2)f, g >

=< 8(∇b|φ|2)∆bf, g > .

(4.65)

< −4(∇b|φ|2)�bf, g > = −8p < (∇b|φ|2)f, g >= −8p < |φ|21̄f1, g >

= 8p < |φ|2f11̄, g > +8p < |φ|2f1, g1 >

= 8p

∫

S3

|φ|2f1ḡ1̄ − 8p2
∫

S3

|φ|2f ḡ.

(4.66)
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(4.67) < −4�b(∇b|φ|2)f, g >=< −4(∇b|φ|2)f,�bg >= 0

We collect similar terms from (4.61) to (4.67) and observe that both the coefficients of terms

∫

S3

|φ|2f ḡ and

∫

S3

Eφ̄f ḡ

are zero. The coefficient of the term
∫
S3 |φ|2f1ḡ1̄ is 8p and The coefficient of the term

∫
S3 Eφ̄f1ḡ is −8. This completes the proof of (b).

Similarly, for f ∈ H0,p, integrating by parts and using f1 = 0 and g1̄ = 0, we get

< 16|φ|2P0f, g > = 0;

< 2|φ|2(�b�b +�b�b)f, g > = 8p2
∫

S3

|φ|2f ḡ;

< −8Eφ̄∆bf, g > = −8p

∫

S3

Eφ̄f ḡ;

< 8∇b(Eφ̄)f, g > = 8p

∫

S3

Eφ̄f ḡ;

< 4(�b|φ|2)∆bf, g > =< 8(∇b|φ|2)∆bf, g > −8p2
∫

S3

|φ|2f ḡ;

< −4(∇b|φ|2)�bf, g > = 0;

< −4�b(∇b|φ|2)f, g > =< −4(∇b|φ|2)f,�bg >= 0,

(4.68)

Taking all together these terms, we get < Rf, g >= 0. This completes the proof of (a). �

The proof of Proposition 1.10: From (4.60),

< P̈ t
0f, f >= 2 < D2f, f > +

1

4
< Rf, f > .

Using Proposition 4.7,

< P̈ t
0f, f >≥

1

4
< Rf, f > .

Now,

f =
∑

k≥1

fk +
∑

k≥1

gk, fk ∈ Hk,0, gk ∈ H0,k.
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Using the relations in Proposition 4.8, one computes

1

4
< Rf, f >= 2

∑

k,l

∫

S3

(k|φ|2 − Eφ̄)fk1 f
l
1 + 2

∑

k,l

∫

S3

(k|φ|2 −Eφ̄)gk1̄g
l
1̄
.

This ends the proof. �

We are going to recall the Hopf fibration of S3 ⊂ C2. We consider the space BC2 by

blowing up the orign from C2. Let (z1, z2) be the linear coordinates on C
2 and (ζ, w) denote

blow up coordinates on BC2. These coordinates are related by

ζ = z1, w =
z2
z1
.

BC2 is the tautological line bundle over CP 1. We see that w is an affine coordinate on

CP 1 = S2, which is the blow up of the origin, and ζ is the fiber coordinate. Now S3 is

defined by r(z1, z2) = |z1|2 + |z2|2 = 1, so we have

1 =r = |z1|2 + |z2|2

= |ζ |2(1 + |w|2)

= |ζ |2eH(w),

(4.69)

where H(w) = ln (1 + |w|2), defines a circle bundle over CP 1 = S2. This is a fibration of S3.

Let θ be the standard contact form on S3. Then we have

(4.70) θ ∧ dθ = i
∂2H(w)

∂w∂w̄
dψ ∧ dw ∧ dw̄,

where ζ = |ζ |eiψ and ψ is the fiber coordinate. Also, we see that T is the generator of the

circular action (z1, z2) → (eiψz1, e
iψz2) with period 2π, that is,

T =
∂

∂ψ
.
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Proposition 4.9. For f ∈ Hp,0, f1 = ei(p−2)ψH(w, w̄) and g ∈ H0,p g1̄ = e−i(p−2)ψG(w, w̄),

so in particular both |f1| and |g1̄| does not depend on the fiber coordinate ψ.

For φ ∈ C∞(S3), we have the following Fourier expansion of φ with respect to ψ

φ =
∞∑

p,q=0

φpq =
∑

m∈Z

eimψφm(w, w̄),

where m = p− q and φm is a function only defined on S2.

Proof. If f ∈ Hp,0, say, f =
∑

a+b=p cabz
a
1z

b
2 then

f1 = Z1f = (z̄2
∂

∂z1
− z̄1

∂

∂z2
)f

=
∑

a+b=p

cab(az
a−1
1 zb2z̄2 − bza1z

b−1
2 z̄1)

=
∑

a+b=p

cab(aζ
a+b−1ζ̄wbw̄ − bζa+b−1ζ̄wb−1)

= ζa+b−1ζ̄

(
∑

a+b=p

cab(aw
bw̄ − bwb−1)

)
.

(4.71)

Since on S3, 1 = |ζ |2eH(w), we have

|f1| =|ζ |a+b
∣∣∣∣∣
∑

a+b=p

cab(aw
bw̄ − bwb−1)

∣∣∣∣∣

= e−
a+b
2
H(w)

∣∣∣∣∣
∑

a+b=p

cab(aw
bw̄ − bwb−1)

∣∣∣∣∣ ,
(4.72)

which does not depend on ψ. On the other hand, for φ ∈ C∞(S3), it has the Fourier

representation φ =
∑∞

p,q=0 φpq. We would like to express it by the coordinates (ζ, w). We
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denote φpq =
∑

a+b=p,c+d=q cabcdz
a
1z

b
2z̄
c
1z̄
d
2 . Then

φpq =
∑

a+b=p,c+d=q

cabcdζ
a+bwbζ̄c+dw̄d

=
∑

a+b=p,c+d=q

cabcde
i(p−q)ψ|ζ |p+qwbw̄d

=
∑

a+b=p,c+d=q

cabcde
i(p−q)ψe

−(p+q)H(w)
2 wbw̄d

= eimψφm(w, w̄),

(4.73)

where m = p− q and φm =
(∑

a+b=p,c+d=q cabcde
−(p+q)H(w)

2 wbw̄d
)
. �

Proposition 4.10. (a) Let φ ∈ C∞(S3), then for φ satisfying (BE)

∫

S3

(k|φ|2 − Eφ̄)|fk1 |2 ≥
∫

S3

|φ|2|fk1 |2, k ≥ 1;

∫

S3

(k|φ|2 −Eφ̄)|gk1̄ |2 ≥
∫

S3

|φ|2|gk1̄ |2, k ≥ 1.

(b) For any φ ∈ Pp1,q1,

∫

S3

(k|φ|2 −Eφ̄)fk1 f
l
1 =





0 , k 6= l
∫
S3(k + p1 − q1 − 4)|φ|2|fk1 |2 , k = l.

∫

S3

(k|φ|2 −Eφ̄)gk1̄g
l
1̄
=





0 , k 6= l
∫
S3(k + p1 − q1 − 4)|φ|2|gk1̄ |2 , k = l.

Proof. We only display the proof for the first statement of part (a). From Proposition 4.9,

|fk1 | is independent of the fiber variable ψ. Changing variables using (4.70), we have using

the Fourier expansion of φ in Proposition 4.9 that

φ =
∑

φpq =
∑

m∈Z

eimψφm(w, w̄), m = p− q.

Now

E = 4φ+ iφ0.
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Thus

Eφ̄ = (
∑

m∈Z

eimψ(4−m)φm(w, w̄))φ̄.

So by Plancherel’s theorem,

∫

S3

(k|φ|2 − Eφ̄)|fk1 |2 =
∫

S2

(∫

S1

(k|φ|2 − Eφ̄)

)
|fk1 |2

=

∫

S2

(
∑

m

(k +m− 4)|φm|2
)
|fk1 |2.

(4.74)

The (BE) condition implies m − 4 = p − q − 4 ≥ 0, and since k ≥ 1, the term above is

bounded below by
∫

S2

(
∑

m

|φm|2
)
|fk1 |2.

Using Plancherel’s theorem again we obtain our result.

We only consider the case for fk1 in part (b), the case for gk1̄ is similar. Observe that if

φ ∈ Pp1,q1, then |φ| is independent of the fiber variable ψ, and since,

Eφ̄ = (4φ+ iφ0) = 4|φ|2 + iφ0φ̄

= 4|φ|2 + (q1 − p1)|φ|2 = (4 + q1 − p1)|φ|2.

Eφ̄ is also independent of the fiber variable ψ, and only depends on w, w̄.Thus if k 6= l, the

integrand may be written as

e±i(k−l)ψG±(w, w̄),

from which it immediately follows that if k 6= l, the integral vanishes. When k = l, from the

computation (4.74) in part (a), ,

∫

S3

(k|φ|2 − Eφ̄)|fk1 |2 = (k + p1 − q1 − 4)
∑

m=p1−q1

∫

S2

|φm|2|fk1 |2

= (k + p1 − q1 − 4)

∫

S3

|φ|2|fk1 |2.

We have our conclusion. �
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The proof of Proposition 1.11: We put together Proposition 1.10 and the computation

of the integrals in the right side of Proposition 1.10 which are done in Proposition 4.10. The

Proposition follows. �

We emphasize that in Proposition 1.11 we do not hypothesize that φ satisfies (BE). The

following corollaries are therefore immediate consequences of Proposition 1.11.

Corollary 4.11. Let φ ∈ Pp1,q1. Then < P̈ t
0|t=0f, f > is positive for all f ∈ Hp,0 or

f ∈ H0,p, p ≥ 1 if φ satisfies condition (BE),i.e., p1 ≥ 4 + q1.

Corollary 4.12. Let φ ∈ Pp1,q1 and W denote the subspace of ⊕Hp,0 ⊕ H0,p on which

P̈ t
0|t=0 < 0. Then W ⊂ ⊕Hp,0 ⊕H0,p, for p < q1 + 4− p1.

Remark 4.13. The reader may verify by making an explicit calculation for φt = t, using

the above formula, that is in Rossi’s example, we have

< P̈ t
0|t=0f, f > < 0, for f = z1, z2, z̄1, z̄2.
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