Influence of heterogeneity on second-kind self-similar solutions for viscous gravity currents
Author(s): Zheng, Zhong; Christov, Ivan C; Stone, Howard A
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr14p3x
Abstract: | We report experimental, theoretical and numerical results on the effects of horizontal heterogeneities on the propagation of viscous gravity currents. We use two geometries to highlight these effects: (a) a horizontal channel (or crack) whose gap thickness varies as a power-law function of the streamwise coordinate; (b) a heterogeneous porous medium whose permeability and porosity have power-law variations. We demonstrate that two types of self-similar behaviours emerge as a result of horizontal heterogeneity: (a) a first-kind self-similar solution is found using dimensional analysis (scaling) for viscous gravity currents that propagate away from the origin (a point of zero permeability); (b) a second-kind self-similar solution is found using a phase-plane analysis for viscous gravity currents that propagate toward the origin. These theoretical predictions, obtained using the ideas of self-similar intermediate asymptotics, are compared with experimental results and numerical solutions of the governing partial differential equation developed under the lubrication approximation. All three results are found to be in good agreement. |
Publication Date: | May-2014 |
Electronic Publication Date: | 16-Apr-2014 |
Citation: | Zheng, Zhong, Christov, Ivan C, Stone, Howard A. (2014). Influence of heterogeneity on second-kind self-similar solutions for viscous gravity currents. Journal of Fluid Mechanics, 747 (218 - 246. doi:10.1017/jfm.2014.148 |
DOI: | doi:10.1017/jfm.2014.148 |
ISSN: | 0022-1120 |
EISSN: | 1469-7645 |
Pages: | 218 - 246 |
Type of Material: | Journal Article |
Journal/Proceeding Title: | Journal of Fluid Mechanics |
Version: | Author's manuscript |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.