Skip to main content

Extending Data-Driven Koopman Analysis to Actuated Systems

Author(s): Williams, Matthew O.; Hemati, Maziar S.; Dawson, Scott T.M.; Kevrekidis, Yannis G.; Rowley, Clarence W.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1427r
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWilliams, Matthew O.-
dc.contributor.authorHemati, Maziar S.-
dc.contributor.authorDawson, Scott T.M.-
dc.contributor.authorKevrekidis, Yannis G.-
dc.contributor.authorRowley, Clarence W.-
dc.date.accessioned2021-10-08T19:58:35Z-
dc.date.available2021-10-08T19:58:35Z-
dc.date.issued2016en_US
dc.identifier.citationWilliams, Matthew O., Hemati, Maziar S., Dawson, Scott T.M., Kevrekidis, Yannis G., Rowley, Clarence W. (2016). Extending Data-Driven Koopman Analysis to Actuated Systems. IFAC-PapersOnLine, 49 (18), 704 - 709. doi:10.1016/j.ifacol.2016.10.248en_US
dc.identifier.issn2405-8963-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1427r-
dc.description.abstractIn recent years, methods for data-driven Koopman spectral analysis, such as Dynamic Mode Decomposition (DMD), have become increasingly popular approaches for extracting dynamically relevant features from data sets. However to establish the connection between techniques like DMD or Extended DMD (EDMD) and the Koopman operator, assumptions are made about the nature of the supplied data. In particular, both methods assume the data were generated by an autonomous dynamical system, which can be limiting in certain experimental or computational settings, such as when system actuation is present. We present a modification of EDMD that overcomes this limitation by compensating for the effects of actuation, and is capable of recovering the leading Koopman eigenvalues, eigenfunctions, and modes of the unforced system. To highlight the efficacy of this approach, we apply it to two examples with (quasi)-periodic forcing: the first is the Duffing oscillator, which demonstrates eigenfunction approximation, and the second is a lattice Boltzmann code that approximates the FitzHugh-Nagumo partial differential equation and shows Koopman mode and eigenvalue computation.en_US
dc.format.extent704 - 709en_US
dc.language.isoen_USen_US
dc.relation.ispartofIFAC-PapersOnLineen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleExtending Data-Driven Koopman Analysis to Actuated Systemsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1016/j.ifacol.2016.10.248-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Extending_Data_Driven_Koopman_Systems.pdf1.82 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.