Skip to main content

Some Higher Order Isoperimetric Inequalities via the Method of Optimal Transport

Author(s): Chang, Sun-Yung A.; Wang, Yi

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr13x89
Abstract: In this paper, we establish some sharp inequalities between the volume and the integral of the kth mean curvature for (k + 1)-convex domains in the Euclidean space. The results generalize the classical Alexandrov-Fenchel inequalities for convex domains. Our proof utilizes the method of optimal transportation.
Publication Date: 2014
Electronic Publication Date: 22-Aug-2013
Citation: Chang, Sun-Yung A, Wang, Yi. (2014). Some Higher Order Isoperimetric Inequalities via the Method of Optimal Transport. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 6619 - 6644. doi:10.1093/imrn/rnt182
DOI: doi:10.1093/imrn/rnt182
ISSN: 1073-7928
EISSN: 1687-0247
Pages: 6619 - 6644
Type of Material: Journal Article
Journal/Proceeding Title: INTERNATIONAL MATHEMATICS RESEARCH NOTICES
Version: Author's manuscript



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.