Some Higher Order Isoperimetric Inequalities via the Method of Optimal Transport
Author(s): Chang, Sun-Yung A.; Wang, Yi
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr13x89
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chang, Sun-Yung A. | - |
dc.contributor.author | Wang, Yi | - |
dc.date.accessioned | 2019-10-09T19:47:55Z | - |
dc.date.available | 2019-10-09T19:47:55Z | - |
dc.date.issued | 2014 | en_US |
dc.identifier.citation | Chang, Sun-Yung A, Wang, Yi. (2014). Some Higher Order Isoperimetric Inequalities via the Method of Optimal Transport. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 6619 - 6644. doi:10.1093/imrn/rnt182 | en_US |
dc.identifier.issn | 1073-7928 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr13x89 | - |
dc.description.abstract | In this paper, we establish some sharp inequalities between the volume and the integral of the kth mean curvature for (k + 1)-convex domains in the Euclidean space. The results generalize the classical Alexandrov-Fenchel inequalities for convex domains. Our proof utilizes the method of optimal transportation. | en_US |
dc.format.extent | 6619 - 6644 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | INTERNATIONAL MATHEMATICS RESEARCH NOTICES | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Some Higher Order Isoperimetric Inequalities via the Method of Optimal Transport | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1093/imrn/rnt182 | - |
dc.date.eissued | 2013-08-22 | en_US |
dc.identifier.eissn | 1687-0247 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
10.1.1.744.4890.pdf | 198.27 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.