Skip to main content

Some Higher Order Isoperimetric Inequalities via the Method of Optimal Transport

Author(s): Chang, Sun-Yung A.; Wang, Yi

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr13x89
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, Sun-Yung A.-
dc.contributor.authorWang, Yi-
dc.date.accessioned2019-10-09T19:47:55Z-
dc.date.available2019-10-09T19:47:55Z-
dc.date.issued2014en_US
dc.identifier.citationChang, Sun-Yung A, Wang, Yi. (2014). Some Higher Order Isoperimetric Inequalities via the Method of Optimal Transport. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 6619 - 6644. doi:10.1093/imrn/rnt182en_US
dc.identifier.issn1073-7928-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr13x89-
dc.description.abstractIn this paper, we establish some sharp inequalities between the volume and the integral of the kth mean curvature for (k + 1)-convex domains in the Euclidean space. The results generalize the classical Alexandrov-Fenchel inequalities for convex domains. Our proof utilizes the method of optimal transportation.en_US
dc.format.extent6619 - 6644en_US
dc.language.isoen_USen_US
dc.relation.ispartofINTERNATIONAL MATHEMATICS RESEARCH NOTICESen_US
dc.rightsAuthor's manuscripten_US
dc.titleSome Higher Order Isoperimetric Inequalities via the Method of Optimal Transporten_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1093/imrn/rnt182-
dc.date.eissued2013-08-22en_US
dc.identifier.eissn1687-0247-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
10.1.1.744.4890.pdf198.27 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.