Skip to main content

Conceptual inconsistencies in finite-dimensional quantum and classical mechanics

Author(s): Bondar, Denys I.; Cabrera, Renan; Rabitz, Herschel A.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr12z38
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBondar, Denys I.-
dc.contributor.authorCabrera, Renan-
dc.contributor.authorRabitz, Herschel A.-
dc.date.accessioned2020-10-30T18:35:19Z-
dc.date.available2020-10-30T18:35:19Z-
dc.date.issued2013-07-16en_US
dc.identifier.citationBondar, Denys I., Cabrera, Renan, Rabitz, Herschel A. (2013). Conceptual inconsistencies in finite-dimensional quantum and classical mechanics. PHYSICAL REVIEW A, 88 (10.1103/PhysRevA.88.012116en_US
dc.identifier.issn1050-2947-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr12z38-
dc.description.abstractUtilizing operational dynamic modeling [D. I. Bondar et al., Phys. Rev. Lett. 109, 190403 (2012)], we demonstrate that any finite-dimensional representation of quantum and classical dynamics violates the Ehrenfest theorems. Other peculiarities are also revealed, including the nonexistence of the free particle and ambiguity in defining potential forces. Non-Hermitian mechanics is shown to have the same problems. This work compromises a popular belief that finite-dimensional mechanics is a straightforward discretization of the corresponding infinite-dimensional formulation.en_US
dc.format.extent012116-1 - 012116-5en_US
dc.language.isoen_USen_US
dc.relation.ispartofPHYSICAL REVIEW Aen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleConceptual inconsistencies in finite-dimensional quantum and classical mechanicsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1103/PhysRevA.88.012116-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
PhysRevA.88.012116.pdf263.47 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.