Skip to main content

Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions.

Author(s): Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Yannis G.; Hummer, Gerhard

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1285h
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNedialkova, Lilia V.-
dc.contributor.authorAmat, Miguel A.-
dc.contributor.authorKevrekidis, Yannis G.-
dc.contributor.authorHummer, Gerhard-
dc.date.accessioned2021-10-08T19:58:27Z-
dc.date.available2021-10-08T19:58:27Z-
dc.date.issued2014-09en_US
dc.identifier.citationNedialkova, Lilia V., Amat, Miguel A., Kevrekidis, Yannis G., Hummer, Gerhard. (2014). Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions.. The Journal of chemical physics, 141 (11), 114102-1 - 114102-15. doi:10.1063/1.4893963en_US
dc.identifier.issn0021-9606-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1285h-
dc.description.abstractUsing the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small--but nontrivial--differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.en_US
dc.format.extent114102-1 - 114102-15en_US
dc.languageengen_US
dc.language.isoen_USen_US
dc.relation.ispartofThe Journal of Chemical Physicsen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleDiffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions.en_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1063/1.4893963-
dc.identifier.eissn1089-7690-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Diffusion_maps_clustering_Markov_modeling_transitions.pdf3.12 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.