Skip to main content

A Framework for Globally Optimizing Mixed-Integer Signomial Programs

Author(s): Misener, Ruth; Floudas, Christodoulos A

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr12272
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMisener, Ruth-
dc.contributor.authorFloudas, Christodoulos A-
dc.date.accessioned2021-10-08T19:58:43Z-
dc.date.available2021-10-08T19:58:43Z-
dc.date.issued2014en_US
dc.identifier.citationMisener, Ruth, and Christodoulos A. Floudas. "A Framework for Globally Optimizing Mixed-Integer Signomial Programs." Journal of Optimization Theory and Applications 161, no. 3 (2014): 905-932. doi: 10.1007/s10957-013-0396-3en_US
dc.identifier.issn0022-3239-
dc.identifier.urihttps://core.ac.uk/download/pdf/76992174.pdf-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr12272-
dc.description.abstractMixed-integer signomial optimization problems have broad applicability in engineering. Extending the Global Mixed-Integer Quadratic Optimizer, GloMIQO (Misener, Floudas in J. Glob. Optim., 2012. doi:10.1007/s10898-012-9874-7), this manuscript documents a computational framework for deterministically addressing mixed-integer signomial optimization problems to ε-global optimality. This framework generalizes the GloMIQO strategies of (1) reformulating user input, (2) detecting special mathematical structure, and (3) globally optimizing the mixed-integer nonconvex program. Novel contributions of this paper include: flattening an expression tree towards term-based data structures; introducing additional nonconvex terms to interlink expressions; integrating a dynamic implementation of the reformulation-linearization technique into the branch-and-cut tree; designing term-based underestimators that specialize relaxation strategies according to variable bounds in the current tree node. Computational results are presented along with comparison of the computational framework to several state-of-the-art solvers.en_US
dc.format.extent905 - 932en_US
dc.language.isoen_USen_US
dc.relation.ispartofJournal of Optimization Theory and Applicationsen_US
dc.rightsAuthor's manuscripten_US
dc.titleA Framework for Globally Optimizing Mixed-Integer Signomial Programsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1007/s10957-013-0396-3-
dc.identifier.eissn1573-2878-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
OptimizingMixedIntegerSignomialProgram.pdf1.07 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.